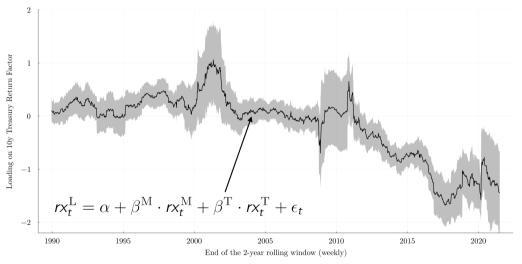
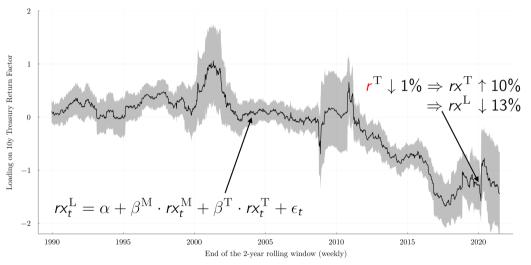
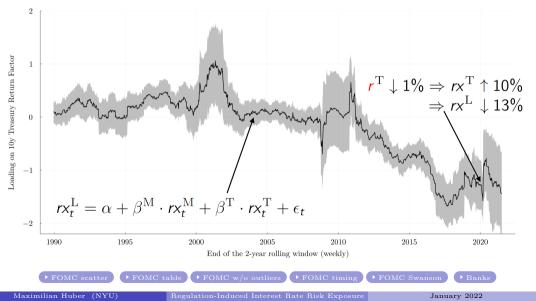

Regulation-Induced Interest Rate Risk Exposure


Maximilian Huber


January 2022



Maximilian Huber (NYU)

2/25

• Duration D of value V: contemplate a level shift of interest rates r

• Duration D of value V: contemplate a level shift of interest rates r

$$D_V = -\frac{1}{V} \frac{\partial V}{\partial r}$$

• Duration D of value V: contemplate a level shift of interest rates r

$$D_V = -rac{1}{V}rac{\partial V}{\partial r}$$

▶ Duration of a 10-year zero-coupon Treasury bond?

• Duration D of value V: contemplate a level shift of interest rates r

$$D_V = -rac{1}{V}rac{\partial V}{\partial r}$$

▶ Duration of a 10-year zero-coupon Treasury bond? 10 years

• Duration D of value V: contemplate a level shift of interest rates r

$$D_V = -\frac{1}{V} \frac{\partial V}{\partial r}$$

- ▶ Duration of a 10-year zero-coupon Treasury bond? 10 years
- Stock price ${\boldsymbol E}$ of a life insurer:

• Duration D of value V: contemplate a level shift of interest rates r

$$D_V = -\frac{1}{V} \frac{\partial V}{\partial r}$$

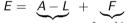
- ▶ Duration of a 10-year zero-coupon Treasury bond? 10 years
- Stock price E of a life insurer:

E =

• Duration D of value V: contemplate a level shift of interest rates r

$$D_V = -\frac{1}{V} \frac{\partial V}{\partial r}$$

- ▶ Duration of a 10-year zero-coupon Treasury bond? 10 years
- Stock price E of a life insurer:


$$E = \underbrace{A - L}_{+} +$$

net assets

• Duration D of value V: contemplate a level shift of interest rates r

$$D_V = -\frac{1}{V} \frac{\partial V}{\partial r}$$

- ▶ Duration of a 10-year zero-coupon Treasury bond? 10 years
- Stock price E of a life insurer:

net assets franchise

• Duration D of value V: contemplate a level shift of interest rates r

$$D_V = -rac{1}{V}rac{\partial V}{\partial r}$$

- ▶ Duration of a 10-year zero-coupon Treasury bond? 10 years
- Stock price \boldsymbol{E} of a life insurer:

• Duration of the stock price E of a life insurer:

$$D_E = \frac{A-L}{E}D_{A-L} + \frac{F}{E}D_F$$

"How exposed are life insurers to interest rate risk, through their net assets and franchise, and why?"

• Institutions of systemic importance!

- Institutions of systemic importance!
- A natural question to ask given:

- Institutions of systemic importance!
- A natural question to ask given:
 - ▶ Liabilities: *issuance* and *servicing* of life insurance policies and annuities

- Institutions of systemic importance!
- A natural question to ask given:
 - ▶ Liabilities: issuance and servicing of life insurance policies and annuities ⇒ 7% of U.S. household financial assets

- Institutions of systemic importance!
- A natural question to ask given:
 - ► Liabilities: issuance and servicing of life insurance policies and annuities ⇒ 7% of U.S. household financial assets
 - ▶ Assets: *investing* into bonds and mortgages

- Institutions of systemic importance!
- A natural question to ask given:
 - ► Liabilities: issuance and servicing of life insurance policies and annuities ⇒ 7% of U.S. household financial assets
 - ▶ Assets: *investing* into bonds and mortgages
 - \Rightarrow about 25% of all outstanding corporate bonds

- Institutions of systemic importance!
- A natural question to ask given:
 - ► Liabilities: issuance and servicing of life insurance policies and annuities ⇒ 7% of U.S. household financial assets
 - ► Assets: *investing* into bonds and mortgages
 - \Rightarrow about 25% of all outstanding corporate bonds
- Expert risk managers: maturity matching?

- Institutions of systemic importance!
- A natural question to ask given:
 - ► Liabilities: issuance and servicing of life insurance policies and annuities ⇒ 7% of U.S. household financial assets
 - ► Assets: *investing* into bonds and mortgages
 - \Rightarrow about 25% of all outstanding corporate bonds
- Expert risk managers: maturity matching? Risk-shifting

- Institutions of systemic importance!
- A natural question to ask given:
 - ► Liabilities: issuance and servicing of life insurance policies and annuities ⇒ 7% of U.S. household financial assets
 - \blacktriangleright Assets: investing into bonds and mortgages
 - \Rightarrow about 25% of all outstanding corporate bonds
- Expert risk managers: maturity matching? Risk-shifting \Rightarrow statutory regulation and filings

- Institutions of systemic importance!
- A natural question to ask given:
 - Liabilities: issuance and servicing of life insurance policies and annuities (opaque) $\Rightarrow 7\%$ of U.S. household financial assets
 - Assets: *investing* into bonds and mortgages (transparent)
 ⇒ about 25% of all outstanding corporate bonds
- Expert risk managers: maturity matching? Risk-shifting \Rightarrow statutory regulation and filings

• Measurement:

• Measurement: when interest rates fall by 1%...

- Measurement: when interest rates fall by 1%...
 - 1. net assets fall by \$121 billion or 26% in 2019

- Measurement: when interest rates fall by 1%...
 - 1. net assets fall by \$121 billion or 26% in 2019 \Rightarrow negative duration of net assets

- Measurement: when interest rates fall by 1%...
 - 1. net assets fall by \$121 billion or 26% in $2019 \Rightarrow$ negative duration of net assets Novel method based on regulatory micro data

- Measurement: when interest rates fall by 1%...
 - 1. net assets fall by \$121 billion or 26% in 2019 \Rightarrow negative duration of net assets Novel method based on regulatory micro data
 - \Rightarrow direct estimate of duration of liabilities of every U.S. life insurer between 2001 and 2020

- Measurement: when interest rates fall by 1%...
 - 1. net assets fall by \$121 billion or 26% in 2019 \Rightarrow negative duration of net assets Novel method based on regulatory micro data
 - \Rightarrow direct estimate of duration of liabilities of every U.S. life insurer between 2001 and 2020
 - 2. spread between investing and borrowing interest rates compresses by 0.5%

- Measurement: when interest rates fall by 1%...
 - 1. net assets fall by \$121 billion or 26% in 2019 \Rightarrow negative duration of net assets Novel method based on regulatory micro data
 - \Rightarrow direct estimate of duration of liabilities of every U.S. life insurer between 2001 and 2020
 - 2. spread between investing and borrowing interest rates <u>compresses</u> by 0.5% Estimate the annuity yield curve

- Measurement: when interest rates fall by 1%...
 - 1. net assets fall by \$121 billion or 26% in 2019 \Rightarrow negative duration of net assets Novel method based on regulatory micro data
 - \Rightarrow direct estimate of duration of liabilities of every U.S. life insurer between 2001 and 2020
 - 2. spread between investing and borrowing interest rates <u>compresses</u> by 0.5% Estimate the annuity yield curve
 - \Rightarrow incomplete pass-through from bond market interest rates to annuity interest rates

- Measurement: when interest rates fall by 1%...
 - 1. net assets fall by \$121 billion or 26% in 2019 \Rightarrow negative duration of net assets Novel method based on regulatory micro data
 - \Rightarrow direct estimate of duration of liabilities of every U.S. life insurer between 2001 and 2020
 - 2. spread between investing and borrowing interest rates <u>compresses</u> by 0.5% Estimate the annuity yield curve
 - \Rightarrow incomplete pass-through from bond market interest rates to annuity interest rates
- Theory of interest rate risk-taking behavior:

- Measurement: when interest rates fall by 1%...
 - 1. net assets fall by \$121 billion or 26% in 2019 \Rightarrow negative duration of net assets Novel method based on regulatory micro data
 - \Rightarrow direct estimate of duration of liabilities of every U.S. life insurer between 2001 and 2020
 - 2. spread between investing and borrowing interest rates <u>compresses</u> by 0.5% Estimate the annuity yield curve
 - \Rightarrow incomplete pass-through from bond market interest rates to annuity interest rates
- Theory of interest rate risk-taking behavior:
 - 3. spread between regulatory and borrowing interest rates widens by 0.35%

- Measurement: when interest rates fall by 1%...
 - 1. net assets fall by \$121 billion or 26% in 2019 \Rightarrow negative duration of net assets Novel method based on regulatory micro data
 - \Rightarrow direct estimate of duration of liabilities of every U.S. life insurer between 2001 and 2020
 - 2. spread between investing and borrowing interest rates <u>compresses</u> by 0.5% Estimate the annuity yield curve
 - \Rightarrow incomplete pass-through from bond market interest rates to annuity interest rates
- Theory of interest rate risk-taking behavior:
 - 3. spread between regulatory and borrowing interest rates widens by 0.35%

Model of a life insurer featuring statutory regulation

- Measurement: when interest rates fall by 1%...
 - 1. net assets fall by \$121 billion or 26% in 2019 \Rightarrow negative duration of net assets Novel method based on regulatory micro data
 - \Rightarrow direct estimate of duration of liabilities of every U.S. life insurer between 2001 and 2020
 - 2. spread between investing and borrowing interest rates <u>compresses</u> by 0.5% Estimate the annuity yield curve
 - \Rightarrow incomplete pass-through from bond market interest rates to annuity interest rates
- Theory of interest rate risk-taking behavior:
 - 3. spread between regulatory and borrowing interest rates widens by 0.35%
 - Model of a life insurer featuring statutory regulation
 - \Rightarrow regulatory hedging motives over power economic hedging motives!

- Measurement: when interest rates fall by 1%...
 - 1. net assets fall by \$121 billion or 26% in 2019 \Rightarrow negative duration of net assets Novel method based on regulatory micro data
 - \Rightarrow direct estimate of duration of liabilities of every U.S. life insurer between 2001 and 2020
 - 2. spread between investing and borrowing interest rates <u>compresses</u> by 0.5% Estimate the annuity yield curve
 - \Rightarrow incomplete pass-through from bond market interest rates to annuity interest rates
- Theory of interest rate risk-taking behavior:
 - 3. spread between regulatory and borrowing interest rates widens by 0.35%

Model of a life insurer featuring statutory regulation

- \Rightarrow regulatory hedging motives over power economic hedging motives!
- Empirical evidence, policy recommendations, broader implications

 Life insurers' risk-taking: credit risk Becker and Ivashina (2015), stock market risk Koijen and Yogo (2021), interest rate risk Ozdagli and Wang (2019)
 ⇒ alleviate roadblock on research about interest rate risk

- Life insurers' risk-taking: credit risk Becker and Ivashina (2015), stock market risk Koijen and Yogo (2021), interest rate risk Ozdagli and Wang (2019)
 ⇒ alleviate roadblock on research about interest rate risk
- Measuring interest rate risk: Begenau, Piazzesi, and Schneider (2020), Möhlmann (2021)
 ⇒ lack of maturity and fair value information of life insurers' liabilities

- Life insurers' risk-taking: credit risk Becker and Ivashina (2015), stock market risk Koijen and Yogo (2021), interest rate risk Ozdagli and Wang (2019)
 ⇒ alleviate roadblock on research about interest rate risk
- Measuring interest rate risk: Begenau, Piazzesi, and Schneider (2020), Möhlmann (2021)
 ⇒ lack of maturity and fair value information of life insurers' liabilities
- Interest rate hedging: Drechsler, Savov, and Schnabl (2017, 2021), Di Tella and Kurlat (2021)
 ⇒ life insurers' do not hedge franchise with net assets but amplify!

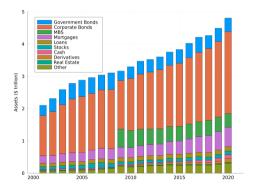
- Life insurers' risk-taking: credit risk Becker and Ivashina (2015), stock market risk Koijen and Yogo (2021), interest rate risk Ozdagli and Wang (2019)
 ⇒ alleviate roadblock on research about interest rate risk
- Measuring interest rate risk: Begenau, Piazzesi, and Schneider (2020), Möhlmann (2021)
 ⇒ lack of maturity and fair value information of life insurers' liabilities
- Interest rate hedging: Drechsler, Savov, and Schnabl (2017, 2021), Di Tella and Kurlat (2021)
 ⇒ life insurers' do not hedge franchise with net assets but amplify!
- Risk management and regulation: Sen (2021)
 - \Rightarrow regulatory treatment of franchise

1. Net Assets A - L

$$D_{A-L} = -\frac{1}{A-L} \frac{\partial (A-L)}{\partial r}$$

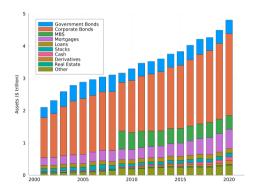
$$D_{A-L} = -\frac{1}{A-L} \frac{\partial (A-L)}{\partial r} = \frac{A}{A-L} \left(\underbrace{D_A - \frac{L}{A} D_L}_{=G} \right) \ge 0$$

• Duration of net assets D_{A-L} and duration gap G:

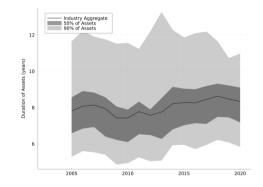

$$D_{A-L} = -\frac{1}{A-L} \frac{\partial (A-L)}{\partial r} = \frac{A}{A-L} \left(\underbrace{D_A - \frac{L}{A} D_L}_{=G} \right) \ge 0$$

 \bullet Estimate D_A from the transparent data on the assets

$$D_{A-L} = -\frac{1}{A-L} \frac{\partial (A-L)}{\partial r} = \frac{A}{A-L} \left(\underbrace{D_A - \frac{L}{A} D_L}_{=G} \right) \ge 0$$


- \bullet Estimate D_A from the transparent data on the assets
- $\bullet\,$ Estimate D_L from the opaque statutory accounting data on the liabilities

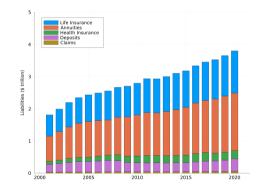
Duration of Assets



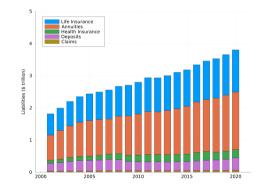
Asset allocation (Source: ACLI)

Duration of Assets

Asset allocation (Source: ACLI)



Duration of assets


Liabilities (Source: ACLI)

• Focus on life insurance policies and annuities

Liabilities (Source: ACLI)

- Focus on life insurance policies and annuities
- Opaque information (missing maturity)

Liabilities (Source: ACLI)

- Focus on life insurance policies and annuities
- Opaque information (missing maturity)
- "Exhibit 5 Aggregate Reserves for Life Contracts":
 - provided by A.M.Best
 - \blacktriangleright at the end of year t from 2001 to 2020
 - for each life insurer i out of 900

	1	2
	Valuation Standard	Total
Life Insura	ince:	
0100001.	58 CSO - NL 2.50% 1961-1969	243,73
		1
0100025.	80 CSO - CRVM 4.50% 1998-2004	
		1
	01CSO CRVM - ANB 4.00% 2009	
	Totals (Gross)	466,142,28
0199998.	Reinsurance ceded	
0199999.	Totals (Net)	126,717,43
Annuities	(excluding supplementary contracts with life contingencies):	
	71 IAM 6.00% 1975-1982 (Imm)	
	1	1
0200028.	83 IAM 7.25% 1986 (Def)	
	1	1
0200043.	Annuity 2000 4.75% 2004 (Def)	206,817,83
	1	
	Annuity 2000 4.50% 2010 (Def)	
		9,676,901,27
0299998.	Reinsurance ceded	7,415,75
	Totals (Net)	9,669,485,51
0299999.		
0299999.		1

- Focus on life insurance policies and annuities
- Opaque information (missing maturity)
- "Exhibit 5 Aggregate Reserves for Life Contracts":
 - provided by A.M.Best
 - \blacktriangleright at the end of year t from 2001 to 2020
 - for each life insurer i out of 900
 - aggregated to valuation standard S: mortality table, reserve discount rate \hat{r} , issue years

	1	2
	Valuation Standard	Total
Life Insura	ance:	
0100001.	58 CSO - NL 2.50% 1961-1969	243,73
	1	1
0100025.	80 CSO - CRVM 4.50% 1998-2004	
	1	1
	01CSO CRVM - ANB 4.00% 2009	
	Totals (Gross)	
0199998.	Reinsurance ceded	
0199999.	Totals (Net)	
Annuities	(excluding supplementary contracts with life contingencies):	
	71 IAM 6.00% 1975-1982 (Imm)	
	1	1
0200028.	83 IAM 7.25% 1986 (Def)	
	1	1
0200043.	Annuity 2000 4.75% 2004 (Def)	206,817,83
	1	1
	Annuity 2000 4.50% 2010 (Def)	
0299997.	Totals (Gross)	9,676,901,27
0299998.	Reinsurance ceded	7,415,75
	Totals (Net)	
	1	1

- Focus on life insurance policies and annuities
- Opaque information (missing maturity)
- "Exhibit 5 Aggregate Reserves for Life Contracts":
 - ▶ provided by A.M.Best
 - \blacktriangleright at the end of year t from 2001 to 2020
 - for each life insurer i out of 900
 - aggregated to valuation standard S: mortality table, reserve discount rate \hat{r} , issue years
- Short-term or long-term liabilities?

	1	2
	Valuation Standard	Total
Life Insura	ance:	
0100001.	58 CSO - NL 2.50% 1961-1969	
	1	1
0100025.	80 CSO - CRVM 4.50% 1998-2004	
	1	1
	01CSO CRVM - ANB 4.00% 2009	
	Totals (Gross)	466,142,28
0199998.	Reinsurance ceded	
0199999.	Totals (Net)	
Annuities	(excluding supplementary contracts with life contingencies):	
0200001.	71 IAM 6.00% 1975-1982 (Imm)	
	1	1
0200028.	83 IAM 7.25% 1986 (Def)	
	1	1
0200043.	Annuity 2000 4.75% 2004 (Def)	206,817,83
	1	1
	Annuity 2000 4.50% 2010 (Def)	
0299997.	Totals (Gross)	9,676,901,27
0299998.	Reinsurance ceded.	7,415,75
0299999.	Totals (Net)	9,669,485,51
		1

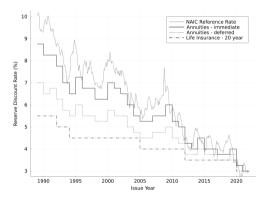
- Focus on life insurance policies and annuities
- Opaque information (missing maturity)
- "Exhibit 5 Aggregate Reserves for Life Contracts":
 - ▶ provided by A.M.Best
 - \blacktriangleright at the end of year t from 2001 to 2020
 - for each life insurer i out of 900
 - aggregated to valuation standard S: mortality table, reserve discount rate \hat{r} , issue years
- Short-term or long-term liabilities?
- Focus on policies with predetermined benefits!

	2
Valuation Standard	Total
Life Insurance:	
0100001. 58 CSO - NL 2.50% 1961-1969	
i i	1
0100025. 80 CSO - CRVM 4.50% 1998-2004	
I	1
0100037. 01CSO CRVM - ANB 4.00% 2009	
0199997. Totals (Gross)	466,142,2
0199998. Reinsurance ceded	
0199999. Totals (Net)	
Annuities (excluding supplementary contracts with life contingencies):	
0200001. 71 IAM 6.00% 1975-1982 (Imm)	
1	1
0200028. 83 IAM 7.25% 1986 (Def)	
I	1
	206,817,8
0200043. Annuity 2000 4.75% 2004 (Def)	
1	1 731 459 7
i 0200047. Annuity 2000 4.50% 2010 (Def)	
i 0200047. Annuity 2000 4.50% 2010 (Def) 0299997. Totals (Gross)	9,676,901,2
2020047. Annuity 2000 4.50% 2010 (Def)	9,676,901,2
i 0200047. Annuity 2000 4.50% 2010 (Def) 0299997. Totals (Gross)	9,676,901,2

 ${\circ}\,$ Actuarial value V

$$V_t = \sum_{h=1}^{\infty} \left(1 + r_{t,h}^{T}\right)^{-h} \cdot \boldsymbol{b}_{t+h}$$

• Actuarial value V and reserve value \hat{V} of a policy:


$$V_t = \sum_{h=1}^{\infty} \left(1 + \mathbf{r}_{t,h}^T \right)^{-h} \cdot \mathbf{b}_{t+h} \quad \hat{V}_t = \sum_{h=1}^{\infty} \left(1 + \hat{\mathbf{r}}_S \right)^{-h} \cdot \hat{\mathbf{b}}_{t+h}$$

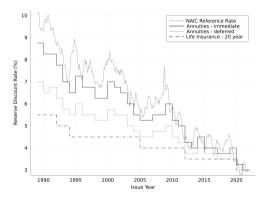
with reserve disount rate \hat{r} constant after issuance

• Actuarial value V and reserve value \hat{V} of a policy:

$$V_t = \sum_{h=1}^{\infty} \left(1 + \mathbf{r}_{t,h}^{\mathsf{T}} \right)^{-h} \cdot \mathbf{b}_{t+h} \quad \hat{V}_t = \sum_{h=1}^{\infty} \left(1 + \hat{\mathbf{r}}_{\mathcal{S}} \right)^{-h} \cdot \hat{\mathbf{b}}_{t+h}$$

with reserve disount rate \hat{r} constant after issuance

Reserve dicount rate \hat{r}


• Actuarial value V and reserve value \hat{V} of a policy:

$$V_t = \sum_{h=1}^{\infty} \left(1 + \boldsymbol{r}_{t,h}^{\mathsf{T}} \right)^{-h} \cdot \boldsymbol{b}_{t+h} \quad \hat{V}_t = \sum_{h=1}^{\infty} \left(1 + \hat{\boldsymbol{r}}_{\mathcal{S}} \right)^{-h} \cdot \hat{\boldsymbol{b}}_{t+h}$$

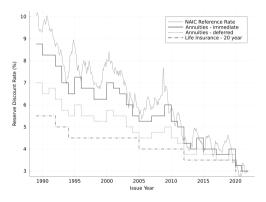
with reserve disount rate \hat{r} constant after issuance

• Pseudo-actuarial value \tilde{V} :

$$\tilde{V}_t = \sum_{h=1}^{\infty} \left(1 + \boldsymbol{r}_{t,h}^T \right)^{-h} \cdot \hat{\boldsymbol{b}}_{t+h}$$

Reserve dicount rate \hat{r}

 \bullet Actuarial value V and reserve value \hat{V} of a policy:


$$V_t = \sum_{h=1}^{\infty} \left(1 + \boldsymbol{r}_{t,h}^{\mathsf{T}} \right)^{-h} \cdot \boldsymbol{b}_{t+h} \quad \hat{V}_t = \sum_{h=1}^{\infty} \left(1 + \hat{\boldsymbol{r}}_{\mathcal{S}} \right)^{-h} \cdot \hat{\boldsymbol{b}}_{t+h}$$

with reserve disount rate \hat{r} constant after issuance

• Pseudo-actuarial value \tilde{V} :

$$\tilde{V}_t = \sum_{h=1}^{\infty} \left(1 + r_{t,h}^T \right)^{-h} \cdot \hat{b}_{t+h}$$

• Popular policies: $\tilde{V}_t \approx V_t$ and $\tilde{D}_t \approx D_t$ • Examples

Reserve dicount rate \hat{r}

Duration of Liabilities: Reserve Evolution

$\bullet\,$ Need \hat{b} to calculate \tilde{V} and \tilde{D}

	1	2
	Valuation Standard	Total
Life Insurance		
0100001. 58	CSO - NL 2.50% 1961-1969	
	1	1
0100025. 80	CSO - CRVM 4.50% 1998-2004	
	1	1
	CSO CRVM - ANB 4.00% 2009	
0199997. Tot	ials (Gross)	466,142,285
0199998. Rei	insurance ceded	
0199999. Tot	als (Net)	
Annuities (exc	luding supplementary contracts with life contingencies):	
	IAM 6.00% 1975-1982 (Imm).	
	1	1
0200028. 83	IAM 7.25% 1986 (Def)	
	1	1
0200043. Ani	nuity 2000 4.75% 2004 (Def)	
	1	1
	nuity 2000 4.50% 2010 (Def)	
0299997. Tot	tals (Gross)	9,676,901,276
0299998. Rei	insurance ceded	7,415,759
0299999. Tot	als (Net)	9,669,485,517
	1	1
0000000 Tel	als (Net) - Page 3, Line 1	0 804 803 005

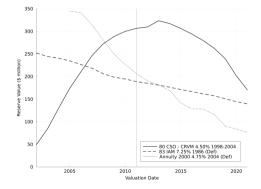
Duration of Liabilities: Reserve Evolution

- Need \hat{b} to calculate \tilde{V} and \tilde{D}
- Back out from reserve values \hat{V} :

$$\hat{V}_{i,t,S} = \left(1 + \hat{r}_{S}
ight)^{-1} \hat{b}_{i,t+1,S} + \left(1 + \hat{r}_{S}
ight)^{-1} \hat{V}_{i,t+1,S}$$

1	2
Valuation Standard	Total
Life Insurance:	
0100001. 58 CSO - NL 2.50% 1961-1969	
I. I	1
0100025. 80 CSO - CRVM 4.50% 1998-2004	
	1
0100037. 01CSO CRVM - ANB 4.00% 2009	
0199997. Totals (Gross)	
0199998. Reinsurance ceded	
0199999. Totals (Net)	126,717,43
Annuities (excluding supplementary contracts with life contingencies):	
0200001. 71 IAM 6.00% 1975-1982 (Imm)	
0200028. 83 IAM 7.25% 1986 (Def)	199,675,69
0200020. 00 PNW F 20 % 1300 (Del)	
0200043. Annuity 2000 4.75% 2004 (Def)	
	í.
0200047. Annuity 2000 4.50% 2010 (Def)	1,731,459,79
0299997. Totals (Gross)	9,676,901,27
0299998. Reinsurance ceded	7,415,75
0299999. Totals (Net)	9,669,485,51
1	1
9999999. Totals (Net) - Page 3, Line 1	9,804,893,99

Duration of Liabilities: Reserve Evolution

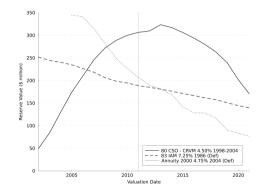

- Need \hat{b} to calculate \tilde{V} and \tilde{D}
- Back out from reserve values \hat{V} :

$$\hat{V}_{i,t,S} = \left(1 + \hat{r}_{S}
ight)^{-1} \hat{b}_{i,t+1,S} + \left(1 + \hat{r}_{S}
ight)^{-1} \hat{V}_{i,t+1,S}$$

	1	2
	Valuation Standard	Total
.ife Insura	nce:	
0100001.	58 CSO - NL 2.50% 1961-1969	
	I	1
0100025.	80 CSO - CRVM 4.50% 1998-2004	
	1	1
	01CSO CRVM - ANB 4.00% 2009	
		466,142,28
	Reinsurance ceded	
0199999.	Totals (Net)	
Annuities	(excluding supplementary contracts with life contingencies):	
0200001.	71 IAM 6.00% 1975-1982 (lmm)	
	7 T IAW 0.00% 1970-1962 (IIIIII).	
	1	1
0200028.	i 83 IAM 7.25% 1986 (Def)	1
	i 83 IAM 7.25% 1986 (Def)i	1
	1	i 188,675,68
0200043.	I I I I I I I I I I I I I I I I I I I	i
0200043. 0200047.	I I AnnuBy 2000 4 75% 2004 (Def) I Annuby 2000 4 50% 2010 (Def) I	i
0200043. 0200047. 0299997.	83 IAM 7 25% 1980 (Def) 1 Annuly 2000 4 75% 2004 (Def) 1 Annuly 2000 4 50% 2010 (Def) 1 Totals (Gross) 1	i
0200043. 0200047. 0299997. 0299998.	I I Annuhy 2000 4,75% 2004 (Def) I Annuhy 2000 4,55% 2010 (Def) I Annuhy 2000 4,55% 2010 (Def) I Totals (Gross) I	i
0200043. 0200047. 0299997. 0299998.	83 IAM 7 25% 1980 (Def) 1 Annuly 2000 4 75% 2004 (Def) 1 Annuly 2000 4 50% 2010 (Def) 1 Totals (Gross) 1	i

- $\bullet \ {\rm Need} \ \hat{b}$ to calculate \tilde{V} and \tilde{D}
- Back out from reserve values $\hat{V} \colon$

$$\hat{V}_{i,t,S} = \left(1+\hat{r}_{S}
ight)^{-1}\hat{b}_{i,t+1,S} + \left(1+\hat{r}_{S}
ight)^{-1}\hat{V}_{i,t+1,S}$$

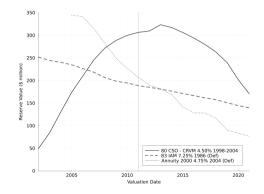


Evolution of selected reserve positions

- \bullet Need \hat{b} to calculate \tilde{V} and \tilde{D}
- Back out from reserve values \hat{V} :

$$\hat{V}_{i,t,S} = \left(1 + \hat{r}_{S}
ight)^{-1} \hat{b}_{i,t+1,S} + \left(1 + \hat{r}_{S}
ight)^{-1} \hat{V}_{i,t+1,S}$$

• Statistical model of reserve evolution • Estimation

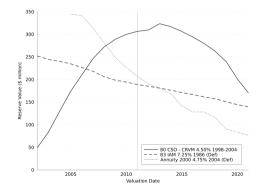


Evolution of selected reserve positions

- \bullet Need \hat{b} to calculate \tilde{V} and \tilde{D}
- Back out from reserve values \hat{V} :

$$\hat{V}_{i,t,S} = \left(1 + \hat{r}_{S}\right)^{-1} \hat{b}_{i,t+1,S} + \left(1 + \hat{r}_{S}\right)^{-1} \hat{V}_{i,t+1,S}$$

- Statistical model of reserve evolution Estimation
- Predictions for \hat{b}

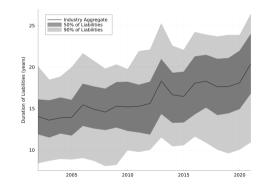


Evolution of selected reserve positions

- $\bullet \ {\rm Need} \ \hat{b}$ to calculate \tilde{V} and \tilde{D}
- Back out from reserve values \hat{V} :

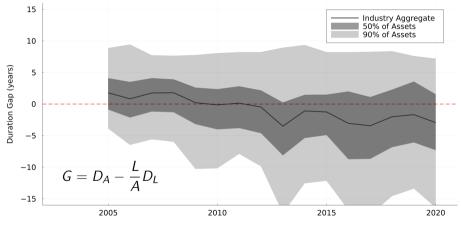
$$\hat{V}_{i,t,S} = \left(1 + \hat{r}_{S}\right)^{-1} \hat{b}_{i,t+1,S} + \left(1 + \hat{r}_{S}\right)^{-1} \hat{V}_{i,t+1,S}$$

- Statistical model of reserve evolution Estimation
- Predictions for \hat{b}
- \bullet Calculate \tilde{V} and \tilde{D}



Evolution of selected reserve positions

- $\bullet \ {\rm Need} \ \hat{b}$ to calculate \tilde{V} and \tilde{D}
- Back out from reserve values \hat{V} :


$$\hat{V}_{i,t,S} = \left(1 + \hat{r}_{S}\right)^{-1} \hat{b}_{i,t+1,S} + \left(1 + \hat{r}_{S}\right)^{-1} \hat{V}_{i,t+1,S}$$

- Statistical model of reserve evolution Estimation
- Predictions for \hat{b}
- \bullet Calculate \tilde{V} and \tilde{D}

Duration of liabilities

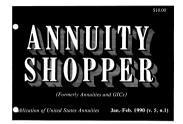
Duration Gap

Duration of net assets in 2019: $D_{A-L}=\frac{A}{A-L}G=-26$ with A=\$4.24tn, and L=\$3.77tn

2. Franchise

• At what interest rates can life insurers borrow from their new annuiants?

- At what interest rates can life insurers borrow from their new annuiants?
- Data set:
 - \blacktriangleright Since 1989, twice per year, on average 20 life insurers i
 - \blacktriangleright Policies j with different term structure of cash flows



MOST COMPETITIVE RATES FOR

- · Plan Termination Annuities
- · Immediate and Deferred Annuities
- · Terminal Funding Annuities
- · Structured Settlement Annuities
- · GICs and Insured Financial Guarantees

- At what interest rates can life insurers borrow from their new annuiants?
- Data set:
 - \blacktriangleright Since 1989, twice per year, on average 20 life insurers i
 - \blacktriangleright Policies j with different term structure of cash flows
- Best possibly rationalize the observed prices:

$$P_{i,j,t} = \sum_{h=1}^{\infty} \left(1 + r_{i,t,h}^{\mathcal{A}} \right)^{-h} \cdot b_{j,t+h}$$

MOST COMPETITIVE RATES FOR

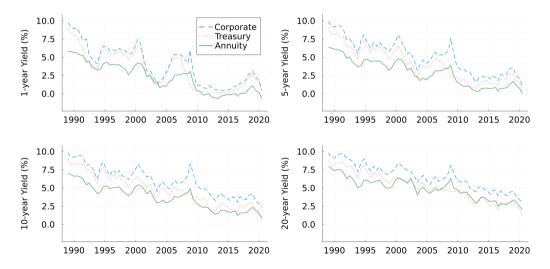
- · Plan Termination Annuities
- · Immediate and Deferred Annuities
- Terminal Funding Annuities
- · Structured Settlement Annuities
- · GICs and Insured Financial Guarantees

▶ Estimation

- At what interest rates can life insurers borrow from their new annuiants?
- Data set:
 - \blacktriangleright Since 1989, twice per year, on average 20 life insurers i
 - \blacktriangleright Policies j with different term structure of cash flows
- Best possibly rationalize the observed prices:

$$P_{i,j,t} = \sum_{h=1}^{\infty} \left(1 + r_{i,t,h}^{\mathcal{A}}\right)^{-h} \cdot b_{j,t+h}$$

• Aggregate over *i* by market share: $r_{t,h}^A$



MOST COMPETITIVE RATES FOR

- · Plan Termination Annuities
- · Immediate and Deferred Annuities
- Terminal Funding Annuities
- · Structured Settlement Annuities
- · GICs and Insured Financial Guarantees

Annuity Yield Curve

• How do the annuity interest rate react to a change of Treasury interest rates?

$$\Delta r_{t,h}^{a} = \alpha_{h} + \beta_{h} \cdot \Delta r_{t,h}^{T} + \epsilon_{t,h}$$

• How do the annuity interest rate react to a change of Treasury interest rates?

$$\Delta r_{t,h}^{a} = \alpha_{h} + \beta_{h} \cdot \Delta r_{t,h}^{T} + \epsilon_{t,h}$$

Estimates $\beta \approx 0.5$ are consistent with Charupat, Kamstra, and Milevsky (2016).

• How do the annuity interest rate react to a change of Treasury interest rates?

$$\Delta r_{t,h}^{a} = \alpha_{h} + \beta_{h} \cdot \Delta r_{t,h}^{T} + \epsilon_{t,h}$$

Estimates $\beta \approx 0.5$ are consistent with Charupat, Kamstra, and Milevsky (2016).

• Interest rates fall, economic spreads fall: $1 - \beta > 0$

• When interest rates fall...

- When interest rates fall...
 - 1. life insurers realize a capital loss on their net assets.

- When interest rates fall...
 - 1. life insurers realize a capital loss on their net assets.
 - 2. life insurers earn a lower spread on newly issued policies.

- When interest rates fall...
 - 1. life insurers realize a capital loss on their net assets.
 - 2. life insurers earn a lower spread on newly issued policies.
- What are the economic drivers of this risk-taking?

- When interest rates fall...
 - 1. life insurers realize a capital loss on their net assets.
 - 2. life insurers earn a lower spread on newly issued policies.
- What are the economic drivers of this risk-taking?
 - \blacktriangleright Towers Watson Life Insurance CFO Survey #30 June 2012

- When interest rates fall...
 - 1. life insurers realize a capital loss on their net assets.
 - 2. life insurers earn a lower spread on newly issued policies.
- What are the economic drivers of this risk-taking?
 - \blacktriangleright Towers Watson Life Insurance CFO Survey #30 June 2012
 - * "Almost all (97%) respondents consider interest rate risk a significant exposure for their company."

- When interest rates fall...
 - 1. life insurers realize a capital loss on their net assets.
 - 2. life insurers earn a lower spread on newly issued policies.
- What are the economic drivers of this risk-taking?
 - \blacktriangleright Towers Watson Life Insurance CFO Survey #30 June 2012
 - * "Almost all (97%) respondents consider interest rate risk a significant exposure for their company."
 - ★ "When considering interest rate exposure, respondents cited the level of statutory capital and earnings as the primary metrics for concern."

• How do the annuity interest rate react to a change of Treasury interest rates?

$$\Delta r_{t,h}^{\mathcal{A}} = \alpha_h + \beta_h \cdot \Delta r_{t,h}^{\mathcal{T}} + \epsilon_{t,h}$$

Estimates $\beta \approx 0.5$ are consistent with Charupat, Kamstra, and Milevsky (2016).

• Interest rates fall, economic spreads fall: $1 - \beta > 0$

• How do the annuity interest rate react to a change of Treasury interest rates?

$$\Delta r_{t,h}^{\mathcal{A}} = \alpha_h + \beta_h \cdot \Delta r_{t,h}^{\mathcal{T}} + \epsilon_{t,h}$$

Estimates $\beta \approx 0.5$ are consistent with Charupat, Kamstra, and Milevsky (2016).

• How does the reserve discount rate react to a change of Treasury market interest rates?

$$\Delta \hat{r}_t^{\mathcal{A}} = \alpha_h + \hat{\beta}_h \cdot \Delta r_{t,h}^{\mathcal{T}} + \epsilon_{t,h}$$

• Interest rates fall, economic spreads fall: $1-\beta>0$

• How do the annuity interest rate react to a change of Treasury interest rates?

$$\Delta r_{t,h}^{\mathcal{A}} = \alpha_h + \beta_h \cdot \Delta r_{t,h}^{\mathcal{T}} + \epsilon_{t,h}$$

Estimates $\beta \approx 0.5$ are consistent with Charupat, Kamstra, and Milevsky (2016).

• How does the reserve discount rate react to a change of Treasury market interest rates?

$$\Delta \hat{r}_t^A = \alpha_h + \hat{\beta}_h \cdot \Delta r_{t,h}^T + \epsilon_{t,h}$$

Estimates $\hat{\beta} \approx 0.15$.

• Interest rates fall, economic spreads fall: $1-\beta > 0$

• How do the annuity interest rate react to a change of Treasury interest rates?

$$\Delta r_{t,h}^{\mathcal{A}} = \alpha_h + \beta_h \cdot \Delta r_{t,h}^{\mathcal{T}} + \epsilon_{t,h}$$

Estimates $\beta \approx 0.5$ are consistent with Charupat, Kamstra, and Milevsky (2016).

• How does the reserve discount rate react to a change of Treasury market interest rates?

$$\Delta \hat{r}_t^A = \alpha_h + \hat{\beta}_h \cdot \Delta r_{t,h}^T + \epsilon_{t,h}$$

Estimates $\hat{\beta} \approx 0.15$.

• Interest rates fall, economic spreads fall: $1 - \beta > 0$, statutory spreads rise: $\hat{\beta} - \beta < 0$.

3. Regulatory Hedging

• Static model of a life insurer issuing one new policy

- Static model of a life insurer issuing one new policy
- Exogenous and stochastic bond interest rate r, borrowing rate r^A , reserve discount rate \hat{r}

- Static model of a life insurer issuing one new policy
- Exogenous and stochastic bond interest rate r, borrowing rate r^A , reserve discount rate \hat{r}
- \bullet Life insurer has A=1 and L=0 and chooses the duration gap $G=D_{A-L}=D_A$

- Static model of a life insurer issuing one new policy
- Exogenous and stochastic bond interest rate r, borrowing rate r^A , reserve discount rate \hat{r}
- \bullet Life insurer has A=1 and L=0 and chooses the duration gap $G=D_{A-L}=D_A$
- $\bullet\,$ Cost of operating at a volatile economic capital K with return:

$$R_{K} = \underbrace{-G(r - \mathbb{E}[r])}_{+} + \underbrace{r - r^{A}}_{+}$$

return on net assets

economic earnings

- Static model of a life insurer issuing one new policy
- Exogenous and stochastic bond interest rate r, borrowing rate r^A , reserve discount rate \hat{r}
- \bullet Life insurer has A=1 and L=0 and chooses the duration gap $G=D_{A-L}=D_A$
- $\bullet\,$ Cost of operating at a volatile economic capital K with return:

$$R_{K} = \underbrace{-G(r - \mathbb{E}[r])}_{\text{return on net assets}} + \underbrace{r - r^{A}}_{\text{economic earnings}}$$

at a volatile regulatory capital \hat{K} with return:
$$R_{\hat{K}} = -\psi G(r - \mathbb{E}[r]) + \hat{r} - r^{A}$$

regulatory return on net assets

regulatory earnings

with market value recognition $\psi \in (0, 1)$

Cost of operating

۲

- Static model of a life insurer issuing one new policy
- Exogenous and stochastic bond interest rate r, borrowing rate r^A , reserve discount rate \hat{r}
- \bullet Life insurer has A=1 and L=0 and chooses the duration gap $G=D_{A-L}=D_A$
- $\bullet\,$ Cost of operating at a volatile economic capital K with return:

$$R_{K} = \underbrace{-G(r - \mathbb{E}[r])}_{\text{return on net assets}} + \underbrace{r - r^{A}}_{\text{economic earnings}}$$

at a volatile regulatory capital \hat{K} with return:
$$R_{\hat{K}} = -\psi G(r - \mathbb{E}[r]) + \hat{r} - r^{A}$$

regulatory return on net assets

regulatory earnings

with market value recognition $\psi \in (0, 1)$

Cost of operating

۲

Model: Optimal Duration

• Profit-maximization problem:

$$\max_{G} \quad \mathbb{E}\left[r-r^{A}-C(R_{K})-\hat{C}(R_{\hat{K}})\right]$$

with reduced-form costs $C(R_K) = \frac{\chi}{2} R_K^2$ and $\hat{C}(R_{\hat{K}}) = \frac{\hat{\chi}}{2} R_{\hat{K}}^2$.

Model: Optimal Duration

• Profit-maximization problem:

$$\max_{G} \quad \mathbb{E}\Big[r - r^{A} - C(R_{\kappa}) - \hat{C}(R_{\hat{\kappa}})\Big]$$

with reduced-form costs $C(R_K)=\frac{\chi}{2}R_K^2$ and $\hat{C}(R_{\hat{K}})=\frac{\hat{\chi}}{2}R_{\hat{K}}^2$

• First-order condition:

$$G^* = rac{\chi(1-eta)+\hat{\chi}\psi(\hat{eta}-eta)}{\chi+\psi^2\hat{\chi}}$$

Model: Optimal Duration

• Profit-maximization problem:

$$\max_{G} \quad \mathbb{E}\Big[r - r^{A} - C(R_{\kappa}) - \hat{C}(R_{\hat{\kappa}})\Big]$$

with reduced-form costs $C(R_K) = \frac{\chi}{2} R_K^2$ and $\hat{C}(R_{\hat{K}}) = \frac{\hat{\chi}}{2} R_{\hat{K}}^2$.

• First-order condition:

$${{\mathcal{G}}^{*}}=rac{\chi(1-eta)+\hat{\chi}\psi(\hat{eta}-eta)}{\chi+\psi^{2}\hat{\chi}}$$

• When $\hat{\chi} = 0$, the economic hedging motives prevail:

$$G^* = 1 - eta > 0$$

Model: Optimal Duration

• Profit-maximization problem:

$$\max_{G} \quad \mathbb{E}\Big[r - r^{A} - C(R_{K}) - \hat{C}(R_{\hat{K}})\Big]$$

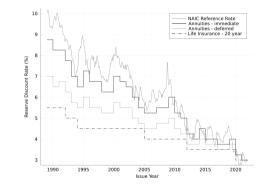
with reduced-form costs $C(R_{\kappa}) = \frac{\chi}{2} R_{\kappa}^2$ and $\hat{C}(R_{\hat{\kappa}}) = \frac{\hat{\chi}}{2} R_{\hat{\kappa}}^2$.

• First-order condition:

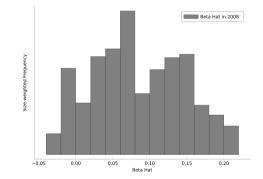
$${{{\it G}}^{*}}=rac{\chi(1-eta)+\hat{\chi}\psi(\hat{eta}-eta)}{\chi+\psi^{2}\hat{\chi}}$$

• When $\hat{\chi} = 0$, the economic hedging motives prevail:

$$G^* = 1 - \beta > 0$$

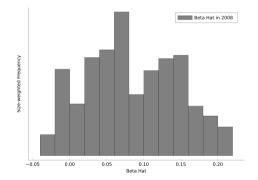

• When $\chi = 0$, the regulatory hedging motives prevail:

$$G^* = \frac{\hat{\beta} - \beta}{\psi} < 0$$


• Hypothesis: "life insurers are under more regulatory scrutiny" $\hat{\chi} \uparrow \Longrightarrow G^* \downarrow$

- Hypothesis: "life insurers are under more regulatory scrutiny" $\hat{\chi} \uparrow \implies G^* \downarrow$
- \bullet Source of identification: variations in $\hat{\beta}$

- Hypothesis: "life insurers are under more regulatory scrutiny" $\hat{\chi} \uparrow \Longrightarrow G^* \downarrow$
- Source of identification: variations in $\hat{\beta}$


- Hypothesis: "life insurers are under more regulatory scrutiny" $\hat{\chi} \uparrow \implies G^* \downarrow$
- Source of identification: variations in $\hat{\beta}$ a prior

- Hypothesis: "life insurers are under more regulatory scrutiny" $\hat{\chi} \uparrow \Longrightarrow G^* \downarrow$
- Source of identification: variations in $\hat{\beta}~$ a prior
- Effect on duration gap G:

$$G_{i,t} = \gamma_{\hat{\beta}} \hat{\beta}_{i,2008} \times Post_t + \gamma X_{i,t} + \alpha_i + \alpha_t + \epsilon_{i,t}$$

with $Post_t = 1$ starting 2012.

- Hypothesis: "life insurers are under more regulatory scrutiny" $\hat{\chi} \uparrow \Longrightarrow G^* \downarrow$
- Source of identification: variations in $\hat{\beta}~$ a prior
- Effect on duration gap G:

$$G_{i,t} = \gamma_{\hat{\beta}} \hat{\beta}_{i,2008} \times Post_t + \gamma X_{i,t} + \alpha_i + \alpha_t + \epsilon_{i,t}$$

with $Post_t = 1$ starting 2012.

G
18.362***
(5.628)
Yes
Yes
Yes
3,839
0.1

• Hypothesis: "life insurers are under more	
regulatory scrutiny" $\hat{\chi} \uparrow \Longrightarrow G^* \downarrow$	$\hat{eta} imes Post$
• Source of identification: variations in $\hat{\beta}$ aprior	,- ···
• Effect on duration gap G :	Controls
$G_{i,t} = \gamma_{\hat{eta}} \hat{eta}_{i,2008} imes \textit{Post}_t + \gamma X_{i,t} + lpha_i + lpha_t + \epsilon_{i,t}$	Life Insure
with $Post_t = 1$ starting 2012.	Year FE
• Economically large effects:	Ν
Average G before 0.67 and after -1.62	R^2 within

	G
$\hat{eta} imes$ Post	18.362***
	(5.628)
Controls	Yes
Life Insurer FE	Yes
Year FE	Yes
Ν	3,839
R^2 within	0.1

• Hypothesis: "life insurers are under more	
regulatory scrutiny" $\hat{\chi} \uparrow \Longrightarrow G^* \downarrow$	
• Source of identification: variations in $\hat{\beta}$ aprior	$\hat{eta} imes F$
• Effect on duration gap G :	
<u>,</u>	Cont
$G_{i,t} = \gamma_{\hat{eta}} \hat{eta}_{i,2008} imes \textit{Post}_t + \gamma X_{i,t} + lpha_i + lpha_t + \epsilon_{i,t}$	Life]
with $Post_t = 1$ starting 2012.	Year
• Economically large effects:	N
Average G before 0.67 and after -1.62	R^2 w
Interquartile range of $\hat{\beta}$: 0.028 - 0.131	

G
18.362***
(5.628)
Yes
Yes
Yes
3,839
0.1

• Realign regulatory and economic hedging motive:

• Realign regulatory and economic hedging motive: $\hat{\beta}\uparrow$

- Realign regulatory and economic hedging motive: $\hat{\beta}\uparrow$
- Annuity reserve discount rate changed in 2018 with "VM-22":

- Realign regulatory and economic hedging motive: $\hat{\beta}\uparrow$
- Annuity reserve discount rate changed in 2018 with "VM-22":
 - \blacktriangleright replaced formula with 7 pages of text and formulas

- Realign regulatory and economic hedging motive: $\hat{\beta}\uparrow$
- Annuity reserve discount rate changed in 2018 with "VM-22":
 - ▶ replaced formula with 7 pages of text and formulas
 - ▶ based on the Treasury yields over previous quarter or even day

- Realign regulatory and economic hedging motive: $\hat{\beta}\uparrow$
- Annuity reserve discount rate changed in 2018 with "VM-22":
 - ▶ replaced formula with 7 pages of text and formulas
 - ▶ based on the Treasury yields over previous quarter or even day \Rightarrow higher $\hat{\beta}$!

- Realign regulatory and economic hedging motive: $\hat{\beta}\uparrow$
- Annuity reserve discount rate changed in 2018 with "VM-22":
 - ▶ replaced formula with 7 pages of text and formulas
 - ▶ based on the Treasury yields over previous quarter or even day \Rightarrow higher $\hat{\beta}$!
- Life insurance policies reserve discount rate changed in 2020 with "VM-20":

- Realign regulatory and economic hedging motive: $\hat{\beta}\uparrow$
- Annuity reserve discount rate changed in 2018 with "VM-22":
 - ▶ replaced formula with 7 pages of text and formulas
 - ▶ based on the Treasury yields over previous quarter or even day \Rightarrow higher $\hat{\beta}$!
- Life insurance policies reserve discount rate changed in 2020 with "VM-20":
 - based on yields on assets and prescribed mean reversion interest rate set by the state insurance commissioners

- Realign regulatory and economic hedging motive: $\hat{\beta}\uparrow$
- Annuity reserve discount rate changed in 2018 with "VM-22":
 - ▶ replaced formula with 7 pages of text and formulas
 - ▶ based on the Treasury yields over previous quarter or even day \Rightarrow higher $\hat{\beta}$!
- Life insurance policies reserve discount rate changed in 2020 with "VM-20":
 - based on yields on assets and prescribed mean reversion interest rate set by the state insurance commissioners
 - $\hat{\beta}$ depends on insurance commissioners

- Realign regulatory and economic hedging motive: $\hat{\beta}\uparrow$
- Annuity reserve discount rate changed in 2018 with "VM-22":
 - ▶ replaced formula with 7 pages of text and formulas
 - ▶ based on the Treasury yields over previous quarter or even day \Rightarrow higher $\hat{\beta}$!
- Life insurance policies reserve discount rate changed in 2020 with "VM-20":
 - based on yields on assets and prescribed mean reversion interest rate set by the state insurance commissioners
 - $\hat{\beta}$ depends on insurance commissioners \Rightarrow make it responsive and be transparent about it!

When interest rates fall:

1. life insurers realize a loss on net assets

When interest rates fall:

- 1. life insurers realize a loss on net assets
- 2. life insurers earn a lower spread on newly issued policies

When interest rates fall:

- 1. life insurers realize a loss on net assets
- 2. life insurers earn a lower spread on newly issued policies
- 3. life insurers focus on immunizing the regulatory exposure of its franchise from changing interest rates

January 2022

When interest rates fall:

- 1. life insurers realize a loss on net assets
- 2. life insurers earn a lower spread on newly issued policies
- 3. life insurers focus on immunizing the regulatory exposure of its franchise from changing interest rates

Future work:

• Available panel data sets on duration of liabilities and annuity yield curve!

When interest rates fall:

- 1. life insurers realize a loss on net assets
- 2. life insurers earn a lower spread on newly issued policies
- 3. life insurers focus on immunizing the regulatory exposure of its franchise from changing interest rates

Future work:

- Available panel data sets on duration of liabilities and annuity yield curve!
- Regulatory exposure of franchise: international evidence

When interest rates fall:

- 1. life insurers realize a loss on net assets
- 2. life insurers earn a lower spread on newly issued policies
- 3. life insurers focus on immunizing the regulatory exposure of its franchise from changing interest rates

Future work:

- Available panel data sets on duration of liabilities and annuity yield curve!
- Regulatory exposure of franchise: international evidence, banks (Chart

When interest rates fall:

- 1. life insurers realize a loss on net assets
- 2. life insurers earn a lower spread on newly issued policies
- 3. life insurers focus on immunizing the regulatory exposure of its franchise from changing interest rates

Future work:

- Available panel data sets on duration of liabilities and annuity yield curve!
- Regulatory exposure of franchise: international evidence, banks (Chart
- Stability of life insurers' liabilities as source of funding

Thank you!

mjh635@nyu.edu

• Exogenous stochastic bond market interest rate r

- \bullet Exogenous stochastic bond market interest rate r
 - \Rightarrow correlated annuity interest rate r^A

- Exogenous stochastic bond market interest rate \boldsymbol{r}
 - \Rightarrow correlated annuity interest rate r^A and statutory dicount rate \hat{r}

- Exogenous stochastic bond market interest rate \boldsymbol{r}
 - \Rightarrow correlated annuity interest rate r^A and statutory dicount rate \hat{r}
- \bullet Life insurer chooses the duration of the legacy capital D:

$$\max_{D} \quad \mathbb{E}\Big[r - r^{A} - C(R_{K}) - \hat{C}(R_{\hat{K}})\Big]$$

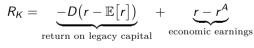
with reduced form costs $C(R_K) = \frac{\chi}{2} R_K^2$ and $\hat{C}(R_{\hat{K}}) = \frac{\hat{\chi}}{2} R_K^2$.

- Exogenous stochastic bond market interest rate \boldsymbol{r}
 - \Rightarrow correlated annuity interest rate r^A and statutory dicount rate \hat{r}
- \bullet Life insurer chooses the duration of the legacy capital D:

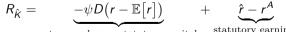
$$\max_{D} \quad \mathbb{E}\Big[r-r^{A}-C(R_{K})-\hat{C}(R_{\hat{K}})\Big]$$

with reduced form costs $C(R_K) = \frac{\chi}{2} R_K^2$ and $\hat{C}(R_{\hat{K}}) = \frac{\hat{\chi}}{2} R_K^2$.

• Economic capital return:



- Exogenous stochastic bond market interest rate r
 - \Rightarrow correlated annuity interest rate r^A and statutory discount rate \hat{r}
- Life insurer chooses the duration of the legacy capital *D*:


$$\max_{D} \quad \mathbb{E}\Big[r - r^{A} - C(R_{K}) - \hat{C}(R_{\hat{K}})\Big]$$

with reduced form costs $C(R_{\kappa}) = \frac{\chi}{2}R_{\kappa}^2$ and $\hat{C}(R_{\kappa}) = \frac{\hat{\chi}}{2}R_{\kappa}^2$.

Economic capital return: ۲

• Statutory capital return:

return on legacy statutory capital

statutory earnings

Duration of Net Assets

• First-order condition:

$$D = \frac{\chi(1-\beta) + \hat{\chi}\psi(\hat{\beta}-\beta)}{\chi + \psi^2 \hat{\chi}}$$

Duration of Net Assets

• First-order condition:

$$D = rac{\chi(1-eta) + \hat{\chi}\psi(\hat{eta}-eta)}{\chi+\psi^2\hat{\chi}}$$

• Without the regulatory friction $\hat{\chi} = 0$, the economic hedging motives prevail:

$$D = 1 - \beta > 0$$

Duration of Net Assets

• First-order condition:

$$D = rac{\chi(1-eta) + \hat{\chi}\psi(\hat{eta}-eta)}{\chi+\psi^2\hat{\chi}}$$

• Without the regulatory friction $\hat{\chi} = 0$, the economic hedging motives prevail:

$$D = 1 - \beta > 0$$

• Without the economic friction $\chi = 0$, the statutory hedging motives prevail:

$$D = \frac{\hat{\beta} - \beta}{\psi} < 0$$

Duration of Net Assets

• First-order condition:

$$D = rac{\chi(1-eta) + \hat{\chi}\psi(\hat{eta}-eta)}{\chi+\psi^2\hat{\chi}}$$

• Without the regulatory friction $\hat{\chi} = 0$, the economic hedging motives prevail:

$$D = 1 - \beta > 0$$

• Without the economic friction $\chi = 0$, the statutory hedging motives prevail:

$$D = \frac{\hat{\beta} - \beta}{\psi} < 0$$

• The annuity interest rate reacts more to the bond market interest rate than the reserve discount rate does! • back

Evidence: Ex-ante Exposure to $\hat{\beta}$

• Reserve discount varies by policy type: $\hat{\beta}^{\text{life}} < \hat{\beta}^{\text{annuity}}$:

 $\textit{FL}_{i,t} = \frac{(\text{Liabilities in Life Insurance Policies})_{i,t}}{(\text{Liabilities})_{i,t}}$

Evidence: Ex-ante Exposure to $\hat{\beta}$

• Reserve discount varies by policy type: $\hat{\beta}^{\text{life}} < \hat{\beta}^{\text{annuity}}$:

$$FL_{i,t} = \frac{\text{(Liabilities in Life Insurance Policies)}_{i,t}}{\text{(Liabilities)}_{i,t}}$$

• What explains the dynamics of the duration gaps?

$$G_{i,t} = \alpha_i + \alpha_t + \gamma_{FL} FL_{i,2008} \times Post_t + \gamma \cdot X_t + \epsilon_{i,t}$$

where $Post_t = 1$ after 2010.

Evidence: Ex-ante Exposure to $\hat{\beta}$

• Reserve discount varies by policy type: $\hat{\beta}^{\text{life}} < \hat{\beta}^{\text{annuity}}$:

$$FL_{i,t} = \frac{\text{(Liabilities in Life Insurance Policies)}_{i,t}}{\text{(Liabilities)}_{i,t}}$$

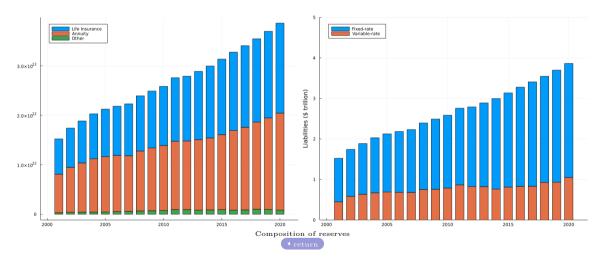
• What explains the dynamics of the duration gaps?

$$G_{i,t} = \alpha_i + \alpha_t + \gamma_{FL} FL_{i,2008} imes Post_t + \gamma \cdot X_t + \epsilon_{i,t}$$

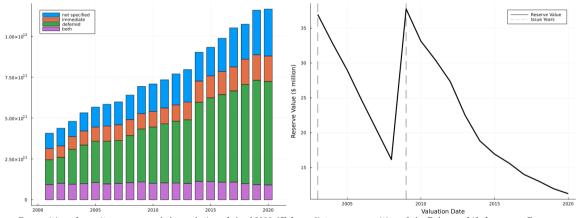
where $Post_t = 1$ after 2010.

	(1)
$\mathit{FL} imes \mathit{Post}$	-3.670**
Controls	Yes
Life Insurer FE	Yes
Year FE	Yes
Ν	3,839
R^2	0.751

• Life insurers provide insurance against mortality and retirement saving vehicles.


- Life insurers provide insurance against mortality and retirement saving vehicles.
- Assets: transparent!
 - ▶ Life insurance companies own assets of about \$7 trillion
 - ▶ 37% of life insurer's assets are invested in corporate and foreign bonds
 - \blacktriangleright Corporate and for eign bond debt \$15 trillion of which 22% are held by life insurers

- Life insurers provide insurance against mortality and retirement saving vehicles.
- Assets: transparent!
 - ▶ Life insurance companies own assets of about \$7 trillion
 - $\blacktriangleright~37\%$ of life insurer's assets are invested in corporate and foreign bonds
 - \blacktriangleright Corporate and for eign bond debt \$15 trillion of which 22% are held by life insurers
- Liabilities: opaque!
 - ▶ Household financial assets of \$105 trillion: 13% deposits, 43% securities, 30% pension entitlements and life insurance
 - Guaranteed by state guaranty funds in the case of default


- Life insurers provide insurance against mortality and retirement saving vehicles.
- Assets: transparent!
 - ▶ Life insurance companies own assets of about \$7 trillion
 - $\blacktriangleright~37\%$ of life insurer's assets are invested in corporate and foreign bonds
 - \blacktriangleright Corporate and for eign bond debt \$15 trillion of which 22% are held by life insurers
- Liabilities: opaque!
 - ▶ Household financial assets of \$105 trillion: 13% deposits, 43% securities, 30% pension entitlements and life insurance
 - Guaranteed by state guaranty funds in the case of default
- Equity: many public/private stock companies, few large mutual companies

Reserves

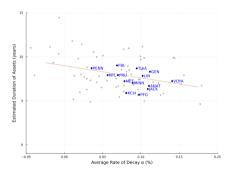
Reserves

Composition of annuity reserves and the evolution of the A2000 6% Immediate reserve position of the Delaware Life Insurance Company

🔺 return

Empirics of Reserve Decay

• Insurer-specific weighted-average decay $\hat{\lambda}_{i,t,s} = \frac{\hat{b}_{i,t,s}}{\hat{V}_{i,t-1,s}}$:


$$\hat{\lambda}_{i,t,S} = \alpha_i + \epsilon_{i,t,S}$$

weighted by the previous size of the reserve position.

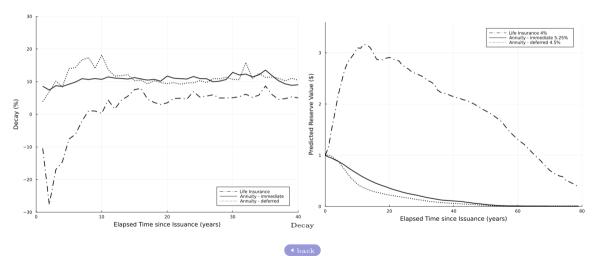
• Life-cycle model of average reserve decay:

$$\hat{\lambda}_{i,t,S} = \Psi_{t-\tau,S} + \epsilon_{i,t,S}$$

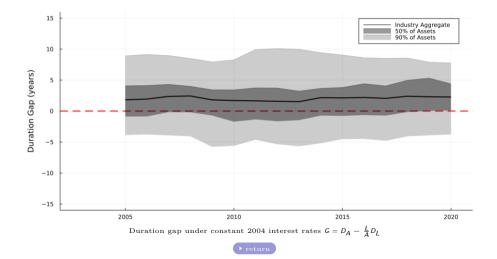
where Ψ is as fixed effect which captures the average decay of a $t - \tau$ year old reserve position of type S.

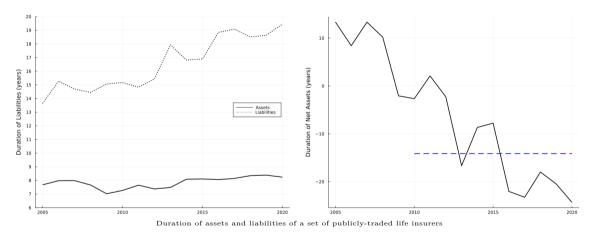
Asset duration and average decay across life insurance companies

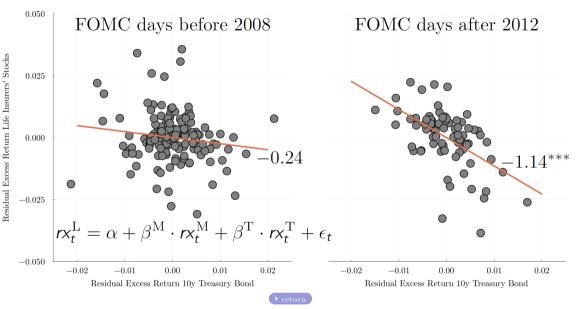
| ◀ bac

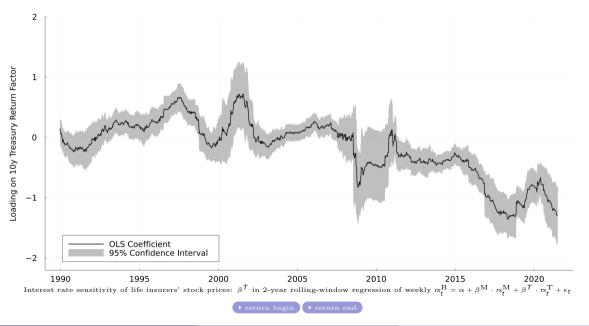

Life-Cycle Reserve Decay

	Rate of Decay $\lambda_{i,t,S,\tau}$					
Decade	0.000 -0.001 -0.010*** -0.000 -					
$\Delta r_{t,\tau,10}^{T}$			0.171***	0.227^{***}		
$\Delta r_{t,t-1,10}^{T}$					-0.147^{***}	-0.113***
Life-cycle FE	Yes	Yes	Yes		Yes	
Finer Life-cycle FE				Yes		Yes
N	97,712	97,712	94,707	94,227	97,712	$97,\!120$
R^2	0.286	0.286	0.286	0.350	0.286	0.349


Decay


Life-Cycle Reserve Decay


Duration Gap under constant Interest Rates



Net Assets of publicly-traded Life Insurers

	rx_t^L					
	Full	Before	After	Full	Before	After
rx_t^{T}	0.492**	0.017	-0.672**	0.407**	-0.109	-0.658***
	(0.234)	(0.176)	(0.336)	(0.163)	(0.132)	(0.170)
rx_t^{M}				1.588***	0.751^{***}	1.543^{***}
				(0.096)	(0.071)	(0.095)
Intercept	0.004**	0.002**	0.001	-0.001	0.000	-0.000
	(0.002)	(0.001)	(0.002)	(0.001)	(0.001)	(0.001)
N	257	140	92	257	140	92
R^2	0.017	0.000	0.042	0.525	0.447	0.757

Regressions on FOMC days

♦ back

	$r \mathbf{x}_t^L$					
	Full	Before	After	Full	Before	After
rx_t^{T}	-0.388**	0.293	-0.839**	-0.467***	-0.155	-0.677***
	(0.178)	(0.207)	(0.329)	(0.120)	(0.156)	(0.191)
rx_t^M				1.332***	0.836***	1.491***
				(0.063)	(0.078)	(0.096)
Intercept	0.003***	0.002**	0.003*	-0.000	0.000	0.000
	(0.001)	(0.001)	(0.002)	(0.001)	(0.001)	(0.001)
N	243	133	78	249	134	83
R^2	0.019	0.015	0.079	0.660	0.467	0.787

Regressions on FOMC days excluding outliers

♦ back

	rx ^L						
	After 2009	After 2010	After 2011		After 2010		
		Until 2021		Until 2019	Until 2020	Until 2021	
rx_t^{T}	0.307	-0.658***	-0.855***	-0.526***	-0.552***	-0.658***	
	(0.256)	(0.170)	(0.186)	(0.165)	(0.165)	(0.170)	
$r x_t^{M}$	2.127^{***}	1.543^{***}	1.547^{***}	1.520^{***}	1.478^{***}	1.543***	
	(0.177)	(0.095)	(0.095)	(0.107)	(0.105)	(0.095)	
Intercept	0.001	-0.000	-0.001	-0.001	-0.001	-0.000	
	(0.002)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	
N	100	92	84	72	80	92	
R ²	0.603	0.757	0.780	0.750	0.728	0.757	

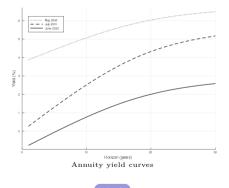
Regressions on FOMC days with different cut-off dates

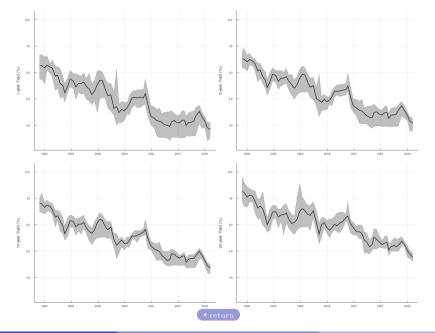
↓ back

	rx_t^L					
	Full	Before	After	Full	Before	After
rx_t^{T}	1.044***	0.842**	-0.782*	0.869***	0.262	-1.048***
	(0.349)	(0.347)	(0.463)	(0.329)	(0.286)	(0.302)
rx_t^{M}				0.504	0.689***	1.051^{***}
				(0.400)	(0.169)	(0.395)
Intercept	0.003*	0.001	0.001	0.002	-0.000	-0.000
	(0.002)	(0.001)	(0.002)	(0.002)	(0.001)	(0.001)
N	241	139	76	241	139	76
R^2	0.008	0.016	0.011	0.277	0.414	0.630

Regressions on FOMC days with different cut-off dates

▲ back


Calculating the Yield Curve


• What term structure of interest rates *r* rationalizes the observed prices of a menu of policies?

$$V_n^{term} = \sum_{h=1}^n e^{-h \cdot r_{t,h}} \cdot 1 \quad V_{age}^{life} = \sum_{h=1}^\infty e^{-h \cdot r_{t,h}} \cdot b_{age,h}$$

• Parametrize $r_{i,t,h}$ by imposing a B-spline on the forward rates for every insurer *i*, time *t*, and policy *j*:

$$P_{i,j,t} = V_{i,j,t} + \epsilon_{i,j,t}$$

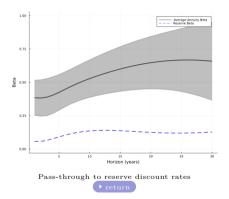
• How does the reserve discount rate react to a change of bond market interest rates?

$$\hat{r}_t = 0.03 + 0.8 \cdot \left(\overline{r}_{June(t)-12,June(t)}^{\mathrm{NAIC}} - 0.03
ight)$$

• How does the reserve discount rate react to a change of bond market interest rates?

$$\hat{r}_t = 0.03 + 0.8 \cdot \left(\overline{r}_{June(t)-12,June(t)}^{\mathrm{NAIC}} - 0.03
ight)$$

• Changes over the 1-year time interval:


$$\Delta r_{t,h}^{a} = \alpha_{h} + \beta_{h} \cdot \Delta r_{t,h}^{b} + \epsilon_{h,t}$$
$$\Delta \hat{r}_{t} = \alpha_{h} + \hat{\beta}_{h} \cdot \Delta r_{t,h}^{b} + \epsilon_{h,t}$$

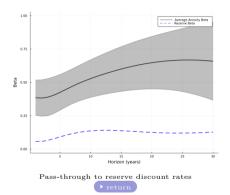
• How does the reserve discount rate react to a change of bond market interest rates?

$$\hat{r}_t = 0.03 + 0.8 \cdot \left(\overline{r}_{June(t)-12,June(t)}^{\mathrm{NAIC}} - 0.03
ight)$$

• Changes over the 1-year time interval:

$$\Delta r_{t,h}^{a} = \alpha_{h} + \beta_{h} \cdot \Delta r_{t,h}^{b} + \epsilon_{h,t}$$
$$\Delta \hat{r}_{t} = \alpha_{h} + \hat{\beta}_{h} \cdot \Delta r_{t,h}^{b} + \epsilon_{h,t}$$

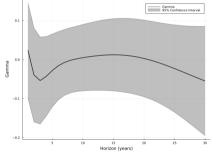
• How does the reserve discount rate react to a change of bond market interest rates?


$$\hat{r}_t = 0.03 + 0.8 \cdot (\bar{r}_{June(t)-12,June(t)}^{\mathrm{NAIC}} - 0.03)$$

• Changes over the 1-year time interval:

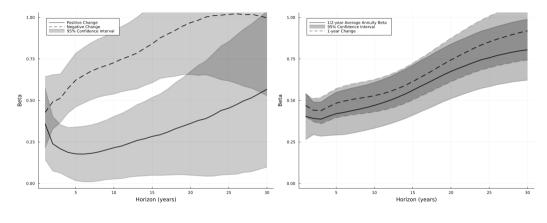
$$\Delta r_{t,h}^{a} = \alpha_{h} + \beta_{h} \cdot \Delta r_{t,h}^{b} + \epsilon_{h,t}$$
$$\Delta \hat{r}_{t} = \alpha_{h} + \hat{\beta}_{h} \cdot \Delta r_{t,h}^{b} + \epsilon_{h,t}$$

• Annuities:


$$0.5=\beta>\hat{\beta}=0.13$$

Incomplete Pass-Through: lower at lower rates?

• How does the annuity interest rate react to a change of bond market interest rates?


$$\Delta r_{t,h}^{a} = \alpha_{h} + \beta_{h} \cdot \Delta r_{t,h}^{b} + \gamma_{h} \cdot \Delta r_{t,h}^{b} \cdot r_{t,h}^{b} + \epsilon_{h,t}$$

Pass-through to annuity rates at higher interest rates

return

Incomplete Pass-Through

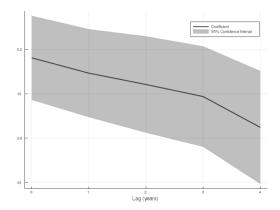
Interpretation

Market Concentration and Pass-Through

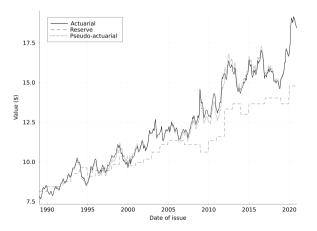
	Annuity Spread					
	Lev	els s	Chan	ges Δs		
r · HHI	0.022^{***} (0.001)	0.033^{***} (0.001)				
$\Delta r \cdot \mathrm{HHI}$			0.060^{***} (0.006)	0.082^{***} (0.006)		
Horizon FE Rating FE	Yes	Yes Yes	Yes	Yes Yes		
N R ²	$13,290 \\ 0.916$	$\begin{array}{c}13,290\\0.931\end{array}$	$13,290 \\ 0.319$	$13,290 \\ 0.333$		

Cross-sectional pass-through related to a proxy for the insurance company specific market power: the average of Herfindahl-Hirschman indices of U.S. states weighted by the share of the collected premiums from a state to overall premiums. The regression specification is: $s_{i,t,h} = \gamma \cdot r_{t,h} HHI_{i,t-1} + \beta_h \cdot r_{t,h} + Rating_{i,t} \cdot r_{t,h} + \epsilon_{i,t,h}$

I return

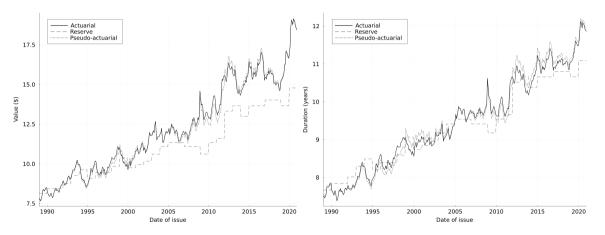

Spread affects future Net Gain from Operations

The annuity spreads $s_{i,t,h}$ predicts the future net gain of operations:


 $NetGain_{i,t+h} = Spread_{i,t} + \epsilon_{i,t}$

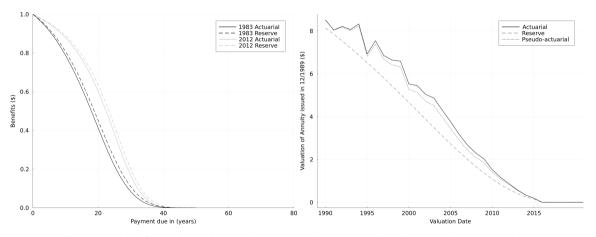
A higher annuity spread implies larger future profits!

return


Example: Life annuity for 65-year-old male paying 1\$ annually

Valuation and duration at issuance for a life annuity for a 65-year-old male

▶ return


Example: Life annuity for 65-year-old male paying 1\$ annually

Valuation and duration at issuance for a life annuity for a 65-year-old male

▶ return

Actuarial vs. Reserve vs. Pseudo-Actuarial

Comparison of cash flows and and valuations after issuance in December 1989 for a life annuity for a 65-year-old male

🔺 return

Indirect Evidence: Supplemental Information

- New York-based life insurance companies have to file the "Analysis of Valuation Reserves" supplement to the annual statement
 - How well does the annual income align with the predicted cash flow?

			To	ital
	VALUATION STANDARD	Location in last year's analysis of valuation reserves Line No.	Annual Income(a) (000 Omitted)	Reserve
0200014.	83 Table 'A'; 9.50%; Imn.; 1981	.200015		106.355
0200015.	83 Table 'A'; 7.65%; Imm.; 1984	.200017		1,634,586
0200016.	83 Table 'A'; 7.65%; Imn.; 1985			
0200017.	83 Table 'A'; 7.65%; Imn.; 1986			
0200018.	83 Table 'A'; 7.65%; Imn.; 1987			
0200019.	83 Table 'A'; 7.65%; Imn.; 1988			
	83 Table 'A'; 7.65%; Imn.; 1989			
	83 Table 'A'; 7.65%; Imn.; 1990		4,933	
0200022.	83 Table 'A'; 7.50%; Imn.; 1991			
0200023.	83 Table 'A'; 7.00%; Imn.; 1992			
	83 Table 'A'; 6.00%; Imn.; 1993			
	83 Table 'A'; 6.50%; Imn.; 1994			
0200026.				
0200027.	83 Table 'A'; 6.00%; Imn.; 1996			

Supplement of the New York Life Insurance Company in 2011

Effect of Market Rates on Policyholder Behaviour

• Model with policyholder behaviour:

$$ar{b}_{i,t,\mathcal{S}} = \Psiig(t- au,\mathcal{S}ig) + \delta \cdot \Delta r_{t, au,10} + \epsilon_{i,t,\mathcal{S}}$$

- The change in the market interest rate since the issuance of the policy may make the outside option more or less attractive.
- A one-percent increase leads to a 0.16 percent higher rate of decay.
- The policyholder behavior has a marginal effect on the duration of the liabilities!

	$ar{b}$				
	(1)	(2)			
t in decades	0.003***	0.003***			
	(0.000)	(0.000)			
$\Delta r_{t, au,10}^{\mathit{Treasury}}$	-0.008				
	(0.022)				
$\Delta r_{t, au,10}^{HQM}$		-0.017			
		(0.024)			
N	90,954	90,954			
R^2	0.355	0.355			

Evidence under Constant Interest Rates

• Omitted variable bias:

falling interest rates mechanically increase the duration of life insurance policies!

• Evaluate all objects under constant 2004 interest rates.

$$\begin{aligned} \mathsf{G}_{i,t} = & \alpha_t + \\ & \gamma_{\mathsf{FL}} \mathsf{FL}_{i,t} + \gamma_{\mathsf{Lev}} \mathsf{Lev}_{i,t} + \gamma_{\mathsf{LogA}} \mathsf{LogA}_{i,t} + \gamma \cdot \mathsf{X}_{i,t} + \epsilon_{i,t} \end{aligned}$$

 $\begin{aligned} \mathcal{G}_{i,t} = & \alpha_i + \alpha_t + \\ & \gamma_{FL} \mathcal{F}_{Li,2008} + \gamma_{Lev} \mathcal{L}ev_{i,t} + \gamma_{LogA} \mathcal{L}ogA_{i,t} + \gamma \cdot X_{i,t} + \epsilon_{i,t} \end{aligned}$

Evidence under Constant Interest Rates

- Omitted variable bias: falling interest rates mechanically increase the duration of life insurance policies!
- Evaluate all objects under constant 2004 interest rates.

$$\begin{aligned} \mathsf{G}_{i,t} = & \alpha_t + \\ & \gamma_{\mathit{FL}} \mathit{FL}_{i,t} + \gamma_{\mathit{Lev}} \mathit{Lev}_{i,t} + \gamma_{\mathit{LogA}} \mathit{LogA}_{i,t} + \gamma \cdot \mathit{X}_{i,t} + \epsilon_{i,t} \end{aligned}$$

$$\begin{aligned} \mathcal{G}_{i,t} = & \alpha_i + \alpha_t + \\ & \gamma_{FL} \mathcal{FL}_{i,2008} + \gamma_{Lev} \mathcal{L}ev_{i,t} + \gamma_{LogA} \mathcal{L}ogA_{i,t} + \gamma \cdot X_{i,t} + \epsilon_{i,t} \end{aligned}$$

	(1)	(2)
FL	-6.260***	-4.577**
Lev	-0.022***	-0.005
LogA	-0.057	1.002
mutual	-1.356***	
MktLev	-0.021**	-0.003
Year FE	Yes	Yes
Life Insurer FE		Yes
N	5,868	5,864
R^2	0.298	0.758