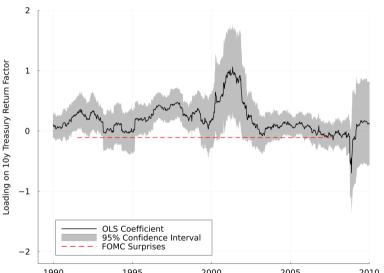
Regulation-Induced Interest Rate Risk Exposure

Maximilian Huber

OFR PhD Symposium on Financial Stability

November 4, 2021



FOMC Swanson Ranks
November 4, 2021 2 / 15

Interest Rate Sensitivity

• Value of the equity E of a life insurer:

$$E = \underbrace{A - L}_{\text{net assets}} + \underbrace{F}_{\text{franchise}}$$

• Duration of equity:

$$D_{E} = -\frac{1}{E} \frac{\partial E}{\partial r} = \frac{A - L}{E} D_{A - L} + \frac{F}{E} D_{F} = \frac{A}{E} \left(\underbrace{D_{A} - \frac{L}{A} D_{L}}_{C} \right) + \frac{F}{E} D_{F}$$

- D_A : security-level holdings information
- D_L : opaque information \Rightarrow statutory reserve regulation
- $D_F < 0$: indirect evidence on the profitability of the funding franchise

1. Net Assets A - L

Actuarial and Reserve Value of a Liability

• Actuarial (fair) V and reserve value \hat{V} of a liability:

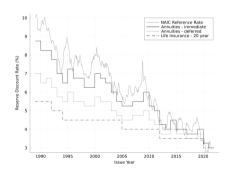
$$V_t = \sum_{h=1}^{\infty} e^{-h \cdot oldsymbol{r}_{t,h}} \cdot \mathbb{E}_t ig[oldsymbol{b}_{t+h} ig] \qquad \hat{V_t} = \sum_{h=1}^{\infty} ig(1 + \hat{oldsymbol{r}}_{S} ig)^{-h} \cdot \hat{oldsymbol{b}}_{t+h}$$

where \hat{r}_s is the reserve discount rate and \hat{b} are reserve cash flows specific to a valuation standard S prescribed by regulation.

• Pseudo-actuarial value:

$$\tilde{V}_t = \sum_{h=1}^{\infty} e^{-h \cdot r_{t,h}} \cdot \hat{b}_{t+h}$$

• Popular policies: $\tilde{V}_t \approx V_t$ and $\tilde{D}_t \approx D_t!$ • Examples



Data

- Need \hat{b} for the pseudo-actuarial value and duration!
- Back out from reserve values \hat{V} :

$$\hat{V}_{i,t,S} = \left(1 + \hat{r}_S\right)^{-1} \hat{b}_{i,t+1,S} + \left(1 + \hat{r}_S\right)^{-1} \hat{V}_{i,t+1,S}$$

- "Exhibit 5 Aggregate Reserves for Life Contracts":
 - at the end of year t from 2001 to 2020
 - for each life insurer i out of 900
 - ▶ aggregated to valuation standard S (mortality table, reserve discount rate \hat{r} , issue years)

1	2	
Valuation Standard	Total	
Life Insurance:		Life Insu
0100001. 58 CSO - NL 2.50% 1961-1969	243,737	0100001
I I	1 1	
0100025. 80 CSO - CRVM 4.50% 1998-2004	306,242,662	0100025
	1	
0100037. 01CSO CRVM - ANB 4.00% 2009		0100037
0199997. Totals (Gross)	466,142,285	0199997
0199998. Reinsurance ceded	339,424,855	0199998
0199999. Totals (Net)	126,717,430	0199999
Annuities (excluding supplementary contracts with life contingencies):		Annuities
0200001. 71 IAM 6.00% 1975-1982 (Imm)	359,802	0200001
l l	1	
0200028. 83 IAM 7.25% 1986 (Def)	188,675,689	0200028
0200043. Annuity 2000 4.75% 2004 (Def)	206,817,839	0200043
0200047. Annuity 2000 4.50% 2010 (Def)	1 721 450 707	0200047
0299997. Totals (Gross)		0299997
0299998. Reinsurance ceded	7,415,759	0299998
0299999. Totals (Net)	9,669,485,517	0299999
9999999. Totals (Net) - Page 3, Line 1	9,804,893,998	9999999

Exhibit 5 of the Great American Life Insurance Company in 2010

Empirics of Reserve Decay

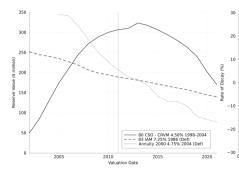
• Reserve decay has life-cycle pattern:

$$\frac{\hat{b}_{i,t,S}}{\hat{V}_{i,t-1,S}} = \Psi_{t-\tau,S} + \epsilon_{i,t,S}$$

estimated by least squares weighted by $\hat{V}_{i,t-1,S}$.

- Estimated model yields predictions for \hat{b} . Richer Models
- Calculate pseudo-actuarial duration D_L .
- Duration gap:

$$G=D_A-\frac{L}{A}D_L$$



Evolution of selected reserve positions

Estimated reserve decay

Duration of liabilities

Duration of assets

2. Funding Franchise

Incomplete Pass-Through: Annuity Rates

• How do the annuity interest rate react to a change of Treasury interest rates?

$$\Delta r_{t,h}^{a} = \alpha_h + \beta_h \cdot \Delta r_{t,h}^{T} + \epsilon_{t,h}$$

• How does the reserve discount rate react to a change of Treasury market interest rates?

$$\Delta \hat{r}_t^a = \alpha_h + \hat{\beta}_h \cdot \Delta r_{t,h}^T + \epsilon_{t,h}$$

Estimates $\hat{\beta} \approx 0.15$.

• Interest rates rise, economic spreads rise: $1 - \beta > 0$, statutory spreads falls: $\hat{\beta} - \beta < 0$.

3. Model

Model of a Life Insurer

- Exogenous stochastic bond market interest rate r \Rightarrow correlated annuity interest rate r^A and statutory discount rate \hat{r}
- ullet Life insurer chooses the duration of the legacy capital D:

$$\max_{D} \quad \mathbb{E}\Big[r - r^{A} - C(R_{K}) - \hat{C}(R_{\hat{K}})\Big]$$

with reduced form costs $C(R_K) = \frac{\chi}{2} R_K^2$ and $\hat{C}(R_{\hat{K}}) = \frac{\hat{\chi}}{2} R_K^2$.

• Economic capital return:

$$R_K = \underbrace{-D(r - \mathbb{E}[r])}_{\text{return on legacy capital}} + \underbrace{r - r^A}_{\text{economic earnings}}$$

• Statutory capital return:

$$R_{\hat{K}} = \underbrace{-\psi D(r - \mathbb{E}[r])}_{\text{return on legacy statutory capital}} + \underbrace{\hat{r} - r^A}_{\text{statutory earnings}}$$

Duration of Net Assets

• First-order condition:

$$D = \frac{\chi(1-\beta) + \hat{\chi}\psi(\hat{\beta} - \beta)}{\chi + \psi^2 \hat{\chi}}$$

• Without the regulatory friction $\hat{\chi} = 0$, the economic hedging motives prevail:

$$D = 1 - \beta > 0$$

• Without the economic friction $\chi = 0$, the statutory hedging motives prevail:

$$D = \frac{\hat{\beta} - \beta}{\psi} < 0$$

• The annuity interest rate reacts more to the bond market interest rate than the reserve discount rate does!

Evidence: Ex-ante Exposure to $\hat{\beta}$

• Reserve discount varies by policy type: $\hat{\beta}^{\text{life}} < \hat{\beta}^{\text{annuity}}$:

$$FL_{i,t} = \frac{\text{(Liabilities in Life Insurance Policies)}_{i,t}}{\text{(Liabilities)}_{i,t}}$$

• What explains the dynamics of the duration gaps?

$$G_{i,t} = \alpha_i + \alpha_t + \gamma_{FL} FL_{i,2008} \times Post_t + \gamma \cdot X_t + \epsilon_{i,t}$$

where $Post_t = 1$ after 2010.

	(1)
FL × Post	-3.670**
Controls	Yes
Life Insurer FE	Yes
Year FE	Yes
N	3,839
R^2	0.751

Findings

- Quantification: when interest rates fall by one-percentage-point...
 - life insurers realize a capital loss of \$121 billion or 26% of capital in 2019.
 Regulatory micro data ⇒ how long-term are the liabilities compared to assets?
 - life insurers earn a half percentage point lower spread on newly issued policies.
 Incomplete pass-through from bond market interest rates to annuity interest rates
- Two exposures do not offset each other! Explanation:
 - 3. Model of a life insurer featuring statutory regulation ⇒ statutory hedging motives overpower economic hedging motives!
 - Empirical evidence, policy recommendations, learnings

Literature Review

- Interest rate risk in banking: Begenau, Piazzesi, and Schneider (2020), Drechsler, Savov, and Schnabl (2017, 2021), Di Tella and Kurlat (forthcoming)
- Financial frictions and risk taking of life insurers: Becker and Ivashina (2015), Koijen and Yogo (2021)
- Risk management and accounting: DeMarzo and Duffie (1992), Heaton, Lucas, and McDonald (2010), Sen (2019)
- Overcoming balance sheet opacity: Gomez, Landier, Srear, and Thesmar (2021), Möhlmann (2021), Tsai (2009)
- Stability of life insurance liabilities: Chodorow-Reich, Ghent, and Haddad (2020), Ozdagli and Wang (2019)

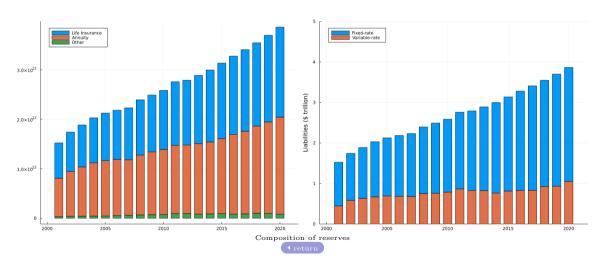
Thank you!

mjh635@nyu.edu

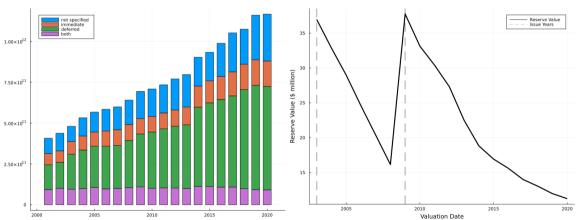
Background

- Life insurers provide insurance against mortality and retirement saving vehicles.
- Assets: transparent!
 - ▶ Life insurance companies own assets of about \$7 trillion
 - ▶ 37% of life insurer's assets are invested in corporate and foreign bonds
 - ▶ Corporate and foreign bond debt \$15 trillion of which 22% are held by life insurers
- Liabilities: opaque!
 - ► Household financial assets of \$105 trillion: 13% deposits, 43% securities, 30% pension entitlements and life insurance
 - ▶ Guaranteed by state guaranty funds in the case of default
- Equity: many public/private stock companies, few large mutual companies

Reserves



Reserves



Composition of annuity reserves and the evolution of the A2000 6% Immediate reserve position of the Delaware Life Insurance Company

Empirics of Reserve Decay

 \bullet Insurer-specific weighted-average decay $\hat{\lambda}_{i,t,S} = \frac{\hat{b}_{i,t,S}}{\hat{V}_{i,t-1,S}}$:

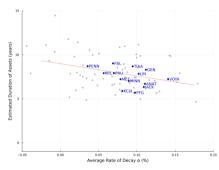
$$\hat{\lambda}_{i,t,S} = \alpha_i + \epsilon_{i,t,S}$$

weighted by the previous size of the reserve position.

• Life-cycle model of average reserve decay:

$$\hat{\lambda}_{i,t,S} = \Psi(t-\tau,S) + \epsilon_{i,t,S}$$

where Ψ is as fixed effect which captures the average decay of a $t - \tau$ year old reserve position of type S.



Asset duration and average decay across life insurance companies

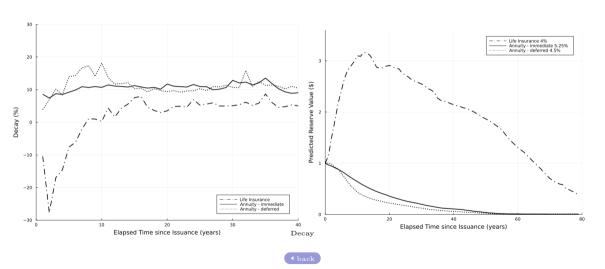
Life-Cycle Reserve Decay

	Rate of Decay $\lambda_{i,t,S, au}$						
Decade		0.000	-0.001	-0.010***	-0.000	-0.007***	
$\Delta r_{t, au,10}^{T}$			0.171***	0.227***			
$\Delta r_{t,t-1,10}^T$					-0.147***	-0.113***	
Life-cycle FE	Yes	Yes	Yes		Yes		
Finer Life-cycle FE				Yes		Yes	
N	97,712	97,712	94,707	94,227	97,712	97,120	
R^2	0.286	0.286	0.286	0.350	0.286	0.349	

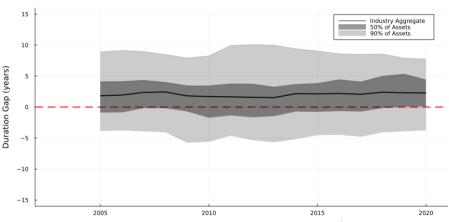
Decay

√ back

Life-Cycle Reserve Decay



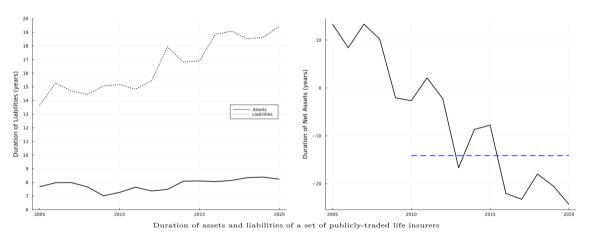
Duration Gap under constant Interest Rates



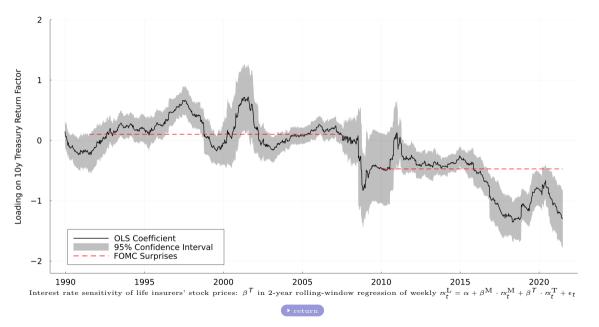
Duration gap under constant 2004 interest rates $G = D_A - \frac{L}{A}D_L$

return

Net Assets of publicly-traded Life Insurers



return



	rx_t^L						
	Full	Before	After	Full	Before	After	
$r x_t^{\mathrm{T}}$	0.492**	0.017	-0.672**	0.407**	-0.109	-0.658***	
	(0.234)	(0.176)	(0.336)	(0.163)	(0.132)	(0.170)	
$r x_t^{\mathrm{M}}$				1.588***	0.751***	1.543***	
				(0.096)	(0.071)	(0.095)	
Intercept	0.004**	0.002**	0.001	-0.001	0.000	-0.000	
	(0.002)	(0.001)	(0.002)	(0.001)	(0.001)	(0.001)	
N	257	140	92	257	140	92	
R^2	0.017	0.000	0.042	0.525	0.447	0.757	

Regressions on FOMC days

	$n_{ m t}^L$						
	Full	Before	After	Full	Before	After	
$r x_t^{\mathrm{T}}$	-0.388**	0.293	-0.839**	-0.467***	-0.155	-0.677***	
	(0.178)	(0.207)	(0.329)	(0.120)	(0.156)	(0.191)	
$r \times_t^{\mathbf{M}}$				1.332***	0.836***	1.491***	
				(0.063)	(0.078)	(0.096)	
Intercept	0.003***	0.002**	0.003*	-0.000	0.000	0.000	
	(0.001)	(0.001)	(0.002)	(0.001)	(0.001)	(0.001)	
N	243	133	78	249	134	83	
R^2	0.019	0.015	0.079	0.660	0.467	0.787	

Regressions on FOMC days excluding outliers

	1

	After 2009	After 2010	After 2011		After 2010	
		Until 2021		Until 2019	Until 2020	Until 2021
$r x_t^{\mathrm{T}}$	0.307	-0.658***	-0.855***	-0.526***	-0.552***	-0.658***
	(0.256)	(0.170)	(0.186)	(0.165)	(0.165)	(0.170)
$r x_t^{M}$	2.127***	1.543***	1.547***	1.520***	1.478***	1.543***
	(0.177)	(0.095)	(0.095)	(0.107)	(0.105)	(0.095)
Intercept	0.001	-0.000	-0.001	-0.001	-0.001	-0.000
	(0.002)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
N	100	92	84	72	80	92
R^2	0.603	0.757	0.780	0.750	0.728	0.757

Regressions on FOMC days with different cut-off dates

	$r_{k_t^L}$						
	Full	Before	After	Full	Before	After	
$r x_t^{\mathrm{T}}$	1.044***	0.842**	-0.782*	0.869***	0.262	-1.048***	
	(0.349)	(0.347)	(0.463)	(0.329)	(0.286)	(0.302)	
$r x_t^{M}$				0.504	0.689***	1.051***	
				(0.400)	(0.169)	(0.395)	
Intercept	0.003*	0.001	0.001	0.002	-0.000	-0.000	
	(0.002)	(0.001)	(0.002)	(0.002)	(0.001)	(0.001)	
N	241	139	76	241	139	76	
R^2	0.008	0.016	0.011	0.277	0.414	0.630	

Regressions on FOMC days with different cut-off dates

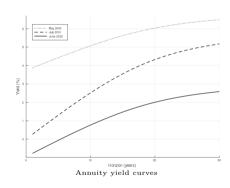
Calculating the Yield Curve

• What term structure of interest rates r rationalizes the observed prices of a menu of policies?

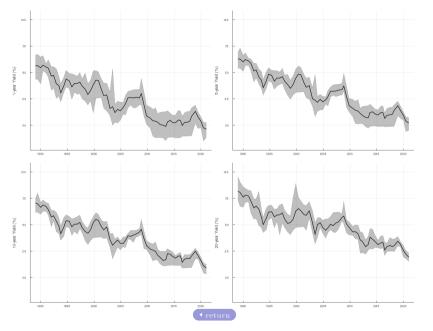
$$V_n^{term} = \sum_{h=1}^n \mathrm{e}^{-h \cdot r_{\mathrm{t},h}} \cdot 1 \quad V_{\mathsf{age}}^{\mathit{life}} = \sum_{h=1}^\infty \mathrm{e}^{-h \cdot r_{\mathrm{t},h}} \cdot b_{\mathsf{age},h}$$

• Parametrize $r_{i,t,h}$ by imposing a B-spline on the forward rates for every insurer i, time t, and policy j:

$$P_{i,j,t} = V_{i,j,t} + \epsilon_{i,j,t}$$



√ back



Incomplete Pass-Through: Reserve Interest Rate

• How does the reserve discount rate react to a change of bond market interest rates?

$$\hat{r}_t = 0.03 + 0.8 \cdot \left(\overline{r}_{June(t)-12,June(t)}^{\mathrm{NAIC}} - 0.03 \right)$$

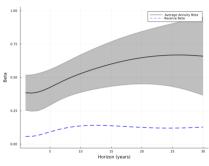
• Changes over the 1-vear time interval:

$$\Delta r_{t,h}^a = \alpha_h + \beta_h \cdot \Delta r_{t,h}^b + \epsilon_{h,t}$$

$$\Delta \hat{r}_t = \alpha_h + \hat{\beta}_h \cdot \Delta r_{t,h}^b + \epsilon_{h,t}$$

• Annuities:

$$0.5 = \beta > \hat{\beta} = 0.13$$

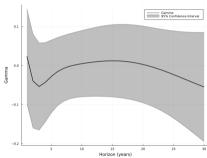


Pass-through to reserve discount rates

Incomplete Pass-Through: lower at lower rates?

• How does the annuity interest rate react to a change of bond market interest rates?

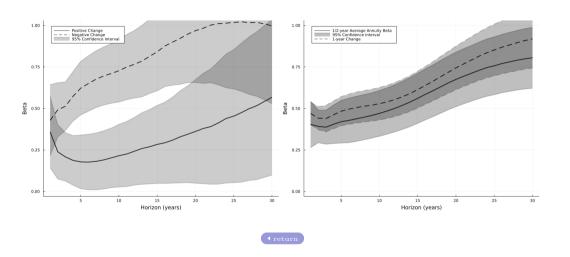
$$\Delta r_{t,h}^{a} = \alpha_h + \beta_h \cdot \Delta r_{t,h}^{b} + \gamma_h \cdot \Delta r_{t,h}^{b} \cdot r_{t,h}^{b} + \epsilon_{h,t}$$



Pass-through to annuity rates at higher interest rates

√ return

Incomplete Pass-Through



Market Concentration and Pass-Through

	Annuity Spread							
	Lev	els s	Chan	ges Δs				
r · HHI	0.022*** (0.001)	0.033*** (0.001)						
$\Delta r \cdot \mathrm{HHI}$			0.060*** (0.006)	0.082*** (0.006)				
Horizon FE Rating FE	Yes	Yes Yes	Yes	Yes Yes				
N R ²	$13,290 \\ 0.916$	$13,290 \\ 0.931$	13,290 0.319	13,290 0.333				

Cross-sectional pass-through related to a proxy for the insurance company specific market power: the average of Herfindahl-Hirschman indices of U.S. states weighted by the share of the collected premiums from a state to overall premiums. The regression specification is: $s_{i,t,h} = \gamma \cdot r_{t,h} + HII_{i,t-1} + \beta_h \cdot r_{t,h} + Rating_{i,t} \cdot r_{t,h} + \epsilon_{i,t,h}$

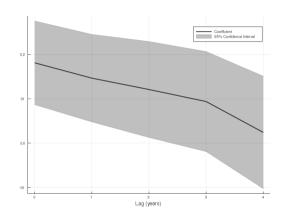
Spread affects future Net Gain from Operations

The annuity spreads $s_{i,t,h}$ predicts the future net gain of operations:

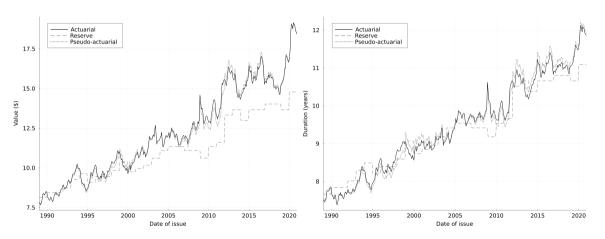
$$NetGain_{i,t+h} = Spread_{i,t} + \epsilon_{i,t}$$

A higher annuity spread implies larger future profits!

◀ return



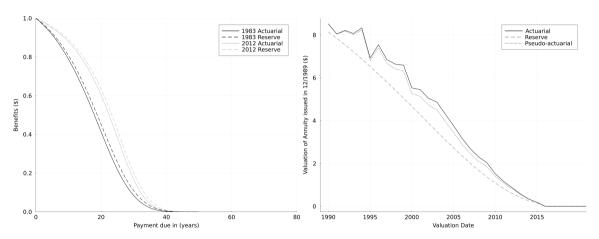
Actuarial vs. Reserve vs. Pseudo-Actuarial



Valuation and duration at issuance for a life annuity for a 65-year-old male

▶ Cash flows and Life-cylce

Actuarial vs. Reserve vs. Pseudo-Actuarial



Comparison of cash flows and and valuations after issuance in December 1989 for a life annuity for a 65-year-old male

Indirect Evidence: Supplemental Information

- New York-based life insurance companies have to file the "Analysis of Valuation Reserves" supplement to the annual statement
 - ► How well does the annual income align with the predicted cash flow?

									To	tal
	,	/ALU	ATION	STAP	IDAF	RD	Location last yea analysis valuation reserve Line Ne	of on on	Annual Income(a) (000 Omitted)	Reserve
0200014.	83 Table	'A';	9.50%;	lm.;	1981		200015			106,35
0200015.	83 Table	'A';	7.65%;	Inn.;	1984		200017		457	1,634,58
0200016.	83 Table	'A';	7.65%;	Inn.;	1985		200018		1,850	10,263,12
0200017.	83 Table	'A';	7.65%;	Imn.;	1986		200019		1,696	7, 104,99
0200018.	83 Table	'A';	7.65%;	Imn.;	1987		200020		2,307	9,379,06
0200019.	83 Table	'A';	7.65%;	Inn.;	1988		200021		2,566	10,575,65
0200020.	83 Table	'A';	7.65%;	Imn.;	1989		200022		3,913	16,526,07
0200021.	83 Table	'A';	7.65%;	Imn.;	1990		200023		4,933	22,012,78
0200022.	83 Table	'A';	7.50%;	Imn.;	1991		200024		2,169	10,523,23
0200023.	83 Table	'A';	7.00%;	Inn.;	1992		200025		2,426	10,323,40
0200024.			6.00%;		1993		200026		2,559	10,382,11
0200025.	83 Table	'A';	6.50%;	Imn.;	1994		200027		4,363	20,934,02
0200026.	83 Table	'A';	6.50%;	lm.;	1995		200028		5,904	32,589,46
0200027.	83 Table	'A';	6.00%;	Imn.;	1996		200029		5,559	29,913,37

Supplement of the New York Life Insurance Company in 2011

return

Effect of Market Rates on Policyholder Behaviour

• Model with policyholder behaviour:

$$\bar{b}_{i,t,S} = \Psi(t-\tau,S) + \delta \cdot \Delta r_{t,\tau,10} + \epsilon_{i,t,S}$$

- The change in the market interest rate since the issuance of the policy may make the outside option more or less attractive.
- A one-percent increase leads to a 0.16 percent higher rate of decay.
- The policyholder behavior has a marginal effect on the duration of the liabilities!

	$ar{b}$				
	(1)	(2)			
t in decades	0.003***	0.003***			
	(0.000)	(0.000)			
$\Delta r_{t, au,10}^{\mathit{Treasury}}$	-0.008				
	(0.022)				
$\Delta r_{t, au,10}^{HQM}$		-0.017			
		(0.024)			
N	90,954	90,954			
R^2	0.355	0.355			

Evidence under Constant Interest Rates

- Omitted variable bias: falling interest rates mechanically increase the duration of life insurance policies!
- Evaluate all objects under constant 2004 interest rates.

$$\begin{aligned} \textit{G}_{\textit{i},t} = & \alpha_{\textit{t}} + \\ & \gamma_{\textit{FL}} \textit{FL}_{\textit{i},t} + \gamma_{\textit{Lev}} \textit{Lev}_{\textit{i},t} + \gamma_{\textit{LogA}} \textit{LogA}_{\textit{i},t} + \gamma \cdot \textit{X}_{\textit{i},t} + \epsilon_{\textit{i},t} \end{aligned}$$

$$\begin{aligned} \textit{G}_{\textit{i},t} = & \alpha_{\textit{i}} + \alpha_{\textit{t}} + \\ & \gamma_{\textit{FL}} \textit{FL}_{\textit{i},2008} + \gamma_{\textit{Lev}} \textit{Lev}_{\textit{i},t} + \gamma_{\textit{LogA}} \textit{LogA}_{\textit{i},t} + \gamma \cdot \textit{X}_{\textit{i},t} + \epsilon_{\textit{i},t} \end{aligned}$$

	(1)	(2)
FL	-6.260***	-4.577**
Lev	-0.022***	-0.005
LogA	-0.057	1.002
mutual	-1.356***	
MktLev	-0.021**	-0.003
Year FE	Yes	Yes
Life Insurer FE		Yes
N	5,868	5,864
R^2	0.298	0.758